Cassie J Clarke, Tracy J Berg, Joanna Birch, Darren Ennis, Louise Mitchell, Catherine Cloix, Andrew Campbell, David Sumpton, Colin Nixon, Kirsteen Campbell, Victoria L Bridgeman, Peter B Vermeulen, Shane Foo, Eleftherios Kostaras, J Louise Jones, Linda Haywood, Ellie Pulleine, Huabing Yin, Douglas Strathdee, Owen Sansom, Karen Blyth, Iain McNeish, Sara Zanivan, Andrew R Reynolds, Jim C Norman
{"title":"启动子蛋氨酸 tRNA 驱动基质成纤维细胞分泌 II 型胶原蛋白,促进肿瘤生长和血管生成。","authors":"Cassie J Clarke, Tracy J Berg, Joanna Birch, Darren Ennis, Louise Mitchell, Catherine Cloix, Andrew Campbell, David Sumpton, Colin Nixon, Kirsteen Campbell, Victoria L Bridgeman, Peter B Vermeulen, Shane Foo, Eleftherios Kostaras, J Louise Jones, Linda Haywood, Ellie Pulleine, Huabing Yin, Douglas Strathdee, Owen Sansom, Karen Blyth, Iain McNeish, Sara Zanivan, Andrew R Reynolds, Jim C Norman","doi":"10.1016/j.cub.2016.01.045","DOIUrl":null,"url":null,"abstract":"<p><p>Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.</p>","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":"53 1","pages":"755-65"},"PeriodicalIF":0.8000,"publicationDate":"2016-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819511/pdf/","citationCount":"0","resultStr":"{\"title\":\"The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.\",\"authors\":\"Cassie J Clarke, Tracy J Berg, Joanna Birch, Darren Ennis, Louise Mitchell, Catherine Cloix, Andrew Campbell, David Sumpton, Colin Nixon, Kirsteen Campbell, Victoria L Bridgeman, Peter B Vermeulen, Shane Foo, Eleftherios Kostaras, J Louise Jones, Linda Haywood, Ellie Pulleine, Huabing Yin, Douglas Strathdee, Owen Sansom, Karen Blyth, Iain McNeish, Sara Zanivan, Andrew R Reynolds, Jim C Norman\",\"doi\":\"10.1016/j.cub.2016.01.045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.</p>\",\"PeriodicalId\":18298,\"journal\":{\"name\":\"Materials Science-medziagotyra\",\"volume\":\"53 1\",\"pages\":\"755-65\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2016-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819511/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-medziagotyra\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cub.2016.01.045\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2016/3/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2016.01.045","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2016/3/3 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在癌症中,启动子蛋氨酸 tRNA(tRNAi(Met))的表达会发生失调。尽管如此,目前还不清楚 tRNAi(Met) 的表达水平如何影响肿瘤的进展。我们发现,tRNAi(Met)在癌相关成纤维细胞中的表达增加,这意味着肿瘤基质中 tRNAi(Met) 的表达失调可能是导致肿瘤进展的一个因素。为了研究基质 tRNAi(Met) 的升高是如何导致肿瘤进展的,我们培育了一种表达额外 tRNAi(Met) 基因拷贝的小鼠(2+tRNAi(Met) 小鼠)。与野生型小鼠对照组相比,2+tRNAi(Met)小鼠皮下肿瘤异种移植的生长和血管生成得到了增强。2+tRNAi(Met)小鼠成纤维细胞沉积的细胞外基质(ECM)增强了内皮细胞和成纤维细胞的迁移。SILAC 质谱分析表明,tRNAi(Met)的高表达显著增加了某些类型胶原蛋白的合成和分泌,尤其是 II 型胶原蛋白。抑制 II 型胶原会降低 tRNAi(Met)表达的成纤维细胞沉积促迁移 ECM 的能力。我们使用脯氨酰羟化酶抑制剂 3,4-二羟基苯甲酸乙酯(DHB)来确定胶原蛋白的合成是否有助于体内 tRNAi(Met)驱动的促肿瘤基质。DHB 对野生型小鼠的同种异体移植的生长没有影响,但会抑制 2+tRNAi(Met) 小鼠支持血管生成和肿瘤生长的能力。最后,胶原蛋白 II 的表达可预测高级别浆液性卵巢癌的不良预后。综上所述,这些数据表明,tRNAi(Met)水平的升高会增强基质成纤维细胞合成和分泌富含II型胶原蛋白的ECM的能力,从而支持内皮细胞迁移和血管生成,从而促进肿瘤进展。
The Initiator Methionine tRNA Drives Secretion of Type II Collagen from Stromal Fibroblasts to Promote Tumor Growth and Angiogenesis.
Expression of the initiator methionine tRNA (tRNAi(Met)) is deregulated in cancer. Despite this fact, it is not currently known how tRNAi(Met) expression levels influence tumor progression. We have found that tRNAi(Met) expression is increased in carcinoma-associated fibroblasts, implicating deregulated expression of tRNAi(Met) in the tumor stroma as a possible contributor to tumor progression. To investigate how elevated stromal tRNAi(Met) contributes to tumor progression, we generated a mouse expressing additional copies of the tRNAi(Met) gene (2+tRNAi(Met) mouse). Growth and vascularization of subcutaneous tumor allografts was enhanced in 2+tRNAi(Met) mice compared with wild-type littermate controls. Extracellular matrix (ECM) deposited by fibroblasts from 2+tRNAi(Met) mice supported enhanced endothelial cell and fibroblast migration. SILAC mass spectrometry indicated that elevated expression of tRNAi(Met) significantly increased synthesis and secretion of certain types of collagen, in particular type II collagen. Suppression of type II collagen opposed the ability of tRNAi(Met)-overexpressing fibroblasts to deposit pro-migratory ECM. We used the prolyl hydroxylase inhibitor ethyl-3,4-dihydroxybenzoate (DHB) to determine whether collagen synthesis contributes to the tRNAi(Met)-driven pro-tumorigenic stroma in vivo. DHB had no effect on the growth of syngeneic allografts in wild-type mice but opposed the ability of 2+tRNAi(Met) mice to support increased angiogenesis and tumor growth. Finally, collagen II expression predicts poor prognosis in high-grade serous ovarian carcinoma. Taken together, these data indicate that increased tRNAi(Met) levels contribute to tumor progression by enhancing the ability of stromal fibroblasts to synthesize and secrete a type II collagen-rich ECM that supports endothelial cell migration and angiogenesis.
期刊介绍:
It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.