Harvinder S. Dhillon , Gemma Johnson , Mark Shannon , Christina Greenwood , Doug Roberts , Stephen Bustin
{"title":"同质和数字接近结扎法检测艰难梭菌毒素A和B","authors":"Harvinder S. Dhillon , Gemma Johnson , Mark Shannon , Christina Greenwood , Doug Roberts , Stephen Bustin","doi":"10.1016/j.bdq.2016.06.003","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The proximity ligation assay (PLA) detects proteins via their interaction with pairs of proximity probes, which are antibodies coupled to noncomplementary DNA oligonucleotides. The binding of both proximity probes to their epitopes on the target protein brings the oligonucleotides together, allowing them to be bridged by a third oligonucleotide with complementarity to the other two. This enables their ligation and the detection of the resulting amplicon by real-time quantitative PCR (qPCR), which acts as a surrogate marker for the protein of interest. Hence PLA has potential as a clinically relevant diagnostic tool for the detection of pathogens where nucleic acid based tests are inconclusive proof of infection.</p></div><div><h3>Methods</h3><p>We prepared monoclonal and polyclonal proximity probes targeting <em><em>Clostridium</em> difficile</em> toxins A (TcdA) and B (TcdB) and used hydrolysis probe-based qPCR and digital PCR (dPCR) assays to detect antibody/antigen interactions.</p></div><div><h3>Results</h3><p>The performance of the PLA assays was antibody-dependent but both TcdA and TcdB assays were more sensitive than comparable ELISAs in either single- or dualplex formats. Both PLAs could be performed using single monoclonal antibodies coupled to different oligonucleotides. Finally, we used dPCR to demonstrate its potential for accurate and reliable quantification of TcdA.</p></div><div><h3>Conclusions</h3><p>PLA with either qPCR or dPCR readout have potential as new diagnostic applications for the detection of pathogens where nucleic acid based tests do not indicate viability or expression of toxins. Importantly, since it is not always necessary to use two different antibodies, the pool of potential antibodies useful for PLA diagnostic assays is usefully enhanced.</p></div>","PeriodicalId":38073,"journal":{"name":"Biomolecular Detection and Quantification","volume":"10 ","pages":"Pages 2-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.003","citationCount":"14","resultStr":"{\"title\":\"Homogeneous and digital proximity ligation assays for the detection of Clostridium difficile toxins A and B\",\"authors\":\"Harvinder S. Dhillon , Gemma Johnson , Mark Shannon , Christina Greenwood , Doug Roberts , Stephen Bustin\",\"doi\":\"10.1016/j.bdq.2016.06.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>The proximity ligation assay (PLA) detects proteins via their interaction with pairs of proximity probes, which are antibodies coupled to noncomplementary DNA oligonucleotides. The binding of both proximity probes to their epitopes on the target protein brings the oligonucleotides together, allowing them to be bridged by a third oligonucleotide with complementarity to the other two. This enables their ligation and the detection of the resulting amplicon by real-time quantitative PCR (qPCR), which acts as a surrogate marker for the protein of interest. Hence PLA has potential as a clinically relevant diagnostic tool for the detection of pathogens where nucleic acid based tests are inconclusive proof of infection.</p></div><div><h3>Methods</h3><p>We prepared monoclonal and polyclonal proximity probes targeting <em><em>Clostridium</em> difficile</em> toxins A (TcdA) and B (TcdB) and used hydrolysis probe-based qPCR and digital PCR (dPCR) assays to detect antibody/antigen interactions.</p></div><div><h3>Results</h3><p>The performance of the PLA assays was antibody-dependent but both TcdA and TcdB assays were more sensitive than comparable ELISAs in either single- or dualplex formats. Both PLAs could be performed using single monoclonal antibodies coupled to different oligonucleotides. Finally, we used dPCR to demonstrate its potential for accurate and reliable quantification of TcdA.</p></div><div><h3>Conclusions</h3><p>PLA with either qPCR or dPCR readout have potential as new diagnostic applications for the detection of pathogens where nucleic acid based tests do not indicate viability or expression of toxins. Importantly, since it is not always necessary to use two different antibodies, the pool of potential antibodies useful for PLA diagnostic assays is usefully enhanced.</p></div>\",\"PeriodicalId\":38073,\"journal\":{\"name\":\"Biomolecular Detection and Quantification\",\"volume\":\"10 \",\"pages\":\"Pages 2-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.bdq.2016.06.003\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomolecular Detection and Quantification\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221475351630016X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecular Detection and Quantification","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221475351630016X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Homogeneous and digital proximity ligation assays for the detection of Clostridium difficile toxins A and B
Background
The proximity ligation assay (PLA) detects proteins via their interaction with pairs of proximity probes, which are antibodies coupled to noncomplementary DNA oligonucleotides. The binding of both proximity probes to their epitopes on the target protein brings the oligonucleotides together, allowing them to be bridged by a third oligonucleotide with complementarity to the other two. This enables their ligation and the detection of the resulting amplicon by real-time quantitative PCR (qPCR), which acts as a surrogate marker for the protein of interest. Hence PLA has potential as a clinically relevant diagnostic tool for the detection of pathogens where nucleic acid based tests are inconclusive proof of infection.
Methods
We prepared monoclonal and polyclonal proximity probes targeting Clostridium difficile toxins A (TcdA) and B (TcdB) and used hydrolysis probe-based qPCR and digital PCR (dPCR) assays to detect antibody/antigen interactions.
Results
The performance of the PLA assays was antibody-dependent but both TcdA and TcdB assays were more sensitive than comparable ELISAs in either single- or dualplex formats. Both PLAs could be performed using single monoclonal antibodies coupled to different oligonucleotides. Finally, we used dPCR to demonstrate its potential for accurate and reliable quantification of TcdA.
Conclusions
PLA with either qPCR or dPCR readout have potential as new diagnostic applications for the detection of pathogens where nucleic acid based tests do not indicate viability or expression of toxins. Importantly, since it is not always necessary to use two different antibodies, the pool of potential antibodies useful for PLA diagnostic assays is usefully enhanced.