András Matuz, Gergely Darnai, András N Zsidó, József Janszky, Árpád Csathó
{"title":"精神疲劳和奖励诱导的表现改善的结构神经相关性。","authors":"András Matuz, Gergely Darnai, András N Zsidó, József Janszky, Árpád Csathó","doi":"10.1007/s42977-023-00187-y","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.</p>","PeriodicalId":8853,"journal":{"name":"Biologia futura","volume":" ","pages":"93-104"},"PeriodicalIF":1.8000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural neural correlates of mental fatigue and reward-induced improvement in performance.\",\"authors\":\"András Matuz, Gergely Darnai, András N Zsidó, József Janszky, Árpád Csathó\",\"doi\":\"10.1007/s42977-023-00187-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.</p>\",\"PeriodicalId\":8853,\"journal\":{\"name\":\"Biologia futura\",\"volume\":\" \",\"pages\":\"93-104\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biologia futura\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s42977-023-00187-y\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/27 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biologia futura","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s42977-023-00187-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
Structural neural correlates of mental fatigue and reward-induced improvement in performance.
Neuroimaging studies investigating the association between mental fatigue (henceforth fatigue) and brain physiology have identified many brain regions that may underly the cognitive changes induced by fatigue. These studies focused on the functional changes and functional connectivity of the brain relating to fatigue. The structural correlates of fatigue, however, have received little attention. To fill this gap, this study explored the associations of fatigue with cortical thickness of frontal and parietal regions. In addition, we aimed to explore the associations between reward-induced improvement in performance and neuroanatomical markers in fatigued individuals. Thirty-nine healthy volunteers performed the psychomotor vigilance task for 15 min (i.e., 3 time-on-task blocks of 5 min) out of scanner; followed by an additional rewarded block of the task lasting 5 min. Baseline high-resolution T1-weigthed MR images were obtained. Reaction time increased with time-on-task but got faster again in the rewarded block. Participants' subjective fatigue increased during task performance. In addition, we found that higher increase in subjective mental fatigue was associated with the cortical thickness of the following areas: bilateral precuneus, right precentral gyrus; right pars triangularis and left superior frontal gyrus. Our results suggest that individual differences in subjective mental fatigue may be explained by differences in the degree of cortical thickness of areas that are associated with motor processes, executive functions, intrinsic alertness and are parts of the default mode network.
Biologia futuraAgricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
27
期刊介绍:
How can the scientific knowledge we possess now influence that future? That is, the FUTURE of Earth and life − of humankind. Can we make choices in the present to change our future? How can 21st century biological research ask proper scientific questions and find solid answers? Addressing these questions is the main goal of Biologia Futura (formerly Acta Biologica Hungarica).
In keeping with the name, the new mission is to focus on areas of biology where major advances are to be expected, areas of biology with strong inter-disciplinary connection and to provide new avenues for future research in biology. Biologia Futura aims to publish articles from all fields of biology.