Orthonecida身体计划的演变。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2023-10-27 DOI:10.1111/ede.12462
George S. Slyusarev, Elizaveta K. Skalon, Victor V. Starunov
{"title":"Orthonecida身体计划的演变。","authors":"George S. Slyusarev,&nbsp;Elizaveta K. Skalon,&nbsp;Victor V. Starunov","doi":"10.1111/ede.12462","DOIUrl":null,"url":null,"abstract":"<p>Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in <i>Rhopalura ophiocomae</i> to 4–6 in <i>Intoshia variabili</i>. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Orthonectida body plan\",\"authors\":\"George S. Slyusarev,&nbsp;Elizaveta K. Skalon,&nbsp;Victor V. Starunov\",\"doi\":\"10.1111/ede.12462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in <i>Rhopalura ophiocomae</i> to 4–6 in <i>Intoshia variabili</i>. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-10-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ede.12462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ede.12462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

Orthonectida是一个神秘的动物群,其系统发育位置仍不确定。直系动物寄生在各种海洋无脊椎动物中。它们的生命周期包括寄生疟原虫和自由生活的雄性和雌性。性个体在疟原虫内发育;离开宿主后,它们在外部环境中交配,在雌性体内发育的幼虫感染新的宿主。在一系列研究中,可以清楚地追溯到自由生活的性个体的直系物种简化。纵向和横向肌肉纤维的数量逐渐减少。在神经系统中,简化更为明显。构成神经节的神经元数量从蛇腹蛛的200个显著减少到可变尾蛛的4-6个。外周神经系统也逐渐简化。形态学的简化伴随着基因组的减少。然而,基因不仅从基因组中丢失,而且还通过基因间距离的极度缩短、内含子的短尺寸和重复元素的消除来实现紧凑化。直系进化的主要趋势是自由生活的性个体的简化和小型化,以及基因组的缩小和紧凑化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of Orthonectida body plan

Orthonectida is an enigmatic group of animals with still uncertain phylogenetic position. Orthonectids parasitize various marine invertebrates. Their life cycle comprises a parasitic plasmodium and free-living males and females. Sexual individuals develop inside the plasmodium; after egress from the host they copulate in the external environment, and the larva, which has developed inside the female infects a new host. In a series of studied orthonectid species simplification of free-living sexual individuals can be clearly traced. The number of longitudinal and transverse muscle fibers is gradually reduced. In the nervous system, simplification is even more pronounced. The number of neurons constituting the ganglion is dramatically reduced from 200 in Rhopalura ophiocomae to 4–6 in Intoshia variabili. The peripheral nervous system undergoes gradual simplification as well. The morphological simplification is accompanied with genome reduction. However, not only genes are lost from the genome, it also undergoes compactization ensured by extreme reduction of intergenic distances, short intron sizes, and elimination of repetitive elements. The main trend in orthonectid evolution is simplification and miniaturization of free-living sexual individuals coupled with reduction and compactization of the genome.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊最新文献
A Systematic Review of Sleep Disturbance in Idiopathic Intracranial Hypertension. Advancing Patient Education in Idiopathic Intracranial Hypertension: The Promise of Large Language Models. Anti-Myelin-Associated Glycoprotein Neuropathy: Recent Developments. Approach to Managing the Initial Presentation of Multiple Sclerosis: A Worldwide Practice Survey. Association Between LACE+ Index Risk Category and 90-Day Mortality After Stroke.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1