双酚A乙氧基二甲基丙烯酸酯组织模拟材料中非细胞毒性高分辨率微通道的3D打印。

IF 2.3 4区 工程技术 Q3 ENGINEERING, MANUFACTURING 3D Printing and Additive Manufacturing Pub Date : 2023-10-01 Epub Date: 2023-10-10 DOI:10.1089/3dp.2021.0235
Roger Domingo-Roca, Lauren Gilmour, Oana Dobre, Stylianos Sarrigiannidis, Mairi E Sandison, Richard O'Leary, Joseph C Jackson-Camargo, Helen E Mulvana
{"title":"双酚A乙氧基二甲基丙烯酸酯组织模拟材料中非细胞毒性高分辨率微通道的3D打印。","authors":"Roger Domingo-Roca, Lauren Gilmour, Oana Dobre, Stylianos Sarrigiannidis, Mairi E Sandison, Richard O'Leary, Joseph C Jackson-Camargo, Helen E Mulvana","doi":"10.1089/3dp.2021.0235","DOIUrl":null,"url":null,"abstract":"<p><p>The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 μm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 μm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 μm around a central channel of 150 μm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.</p>","PeriodicalId":54341,"journal":{"name":"3D Printing and Additive Manufacturing","volume":"10 5","pages":"1101-1109"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599442/pdf/","citationCount":"0","resultStr":"{\"title\":\"3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials.\",\"authors\":\"Roger Domingo-Roca, Lauren Gilmour, Oana Dobre, Stylianos Sarrigiannidis, Mairi E Sandison, Richard O'Leary, Joseph C Jackson-Camargo, Helen E Mulvana\",\"doi\":\"10.1089/3dp.2021.0235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 μm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 μm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 μm around a central channel of 150 μm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.</p>\",\"PeriodicalId\":54341,\"journal\":{\"name\":\"3D Printing and Additive Manufacturing\",\"volume\":\"10 5\",\"pages\":\"1101-1109\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10599442/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3D Printing and Additive Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1089/3dp.2021.0235\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2023/10/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3D Printing and Additive Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1089/3dp.2021.0235","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/10/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

创建模拟血管化组织的几何形状和物理特性的载有细胞的流体模型的能力将对疾病病因和未来治疗的研究极为有益,包括在癌症的情况下,研究微血管改变的兴趣越来越大。与动物研究相比,工程系统可以带来显著优势,缓解与可变复杂性和控制相关的挑战。三维(3D)可打印的组织模拟水凝胶可以提供一种替代方案,可以实现对材料生物物理性质的控制。基于水凝胶的系统,可以重建具有直径的复杂3D结构和通道
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D Printing of Noncytotoxic High-Resolution Microchannels in Bisphenol-A Ethoxylate Dimethacrylate Tissue-Mimicking Materials.

The ability to create cell-laden fluidic models that mimic the geometries and physical properties of vascularized tissue would be extremely beneficial to the study of disease etiologies and future therapies, including in the case of cancer where there is increasing interest in studying alterations to the microvasculature. Engineered systems can present significant advantages over animal studies, alleviating challenges associated with variable complexity and control. Three-dimensional (3D)-printable tissue-mimicking hydrogels can offer an alternative, where control of the biophysical properties of the materials can be achieved. Hydrogel-based systems that can recreate complex 3D structures and channels with diameters <500 μm are challenging to produce. We present a noncytotoxic photo-responsive hydrogel that supports 3D printing of complex 3D structures with microchannels down to 150 μm in diameter. Fine tuning of the 3D-printing process has allowed the production of complex structures, where for demonstration purposes we present a helical channel with diameters between 250 and 370 μm around a central channel of 150 μm in diameter in materials with mechanical and acoustic properties that closely replicate those of tissue. The ability to control and accurately reproduce the complex features of the microvasculature has value across a wide range of biomedical applications, especially when the materials involved accurately mimic the physical properties of tissue. An approach that is additionally cell compatible provides a unique setup that can be exploited to study aspects of biomedical research with an unprecedented level of accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3D Printing and Additive Manufacturing
3D Printing and Additive Manufacturing Materials Science-Materials Science (miscellaneous)
CiteScore
6.00
自引率
6.50%
发文量
126
期刊介绍: 3D Printing and Additive Manufacturing is a peer-reviewed journal that provides a forum for world-class research in additive manufacturing and related technologies. The Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Novel applications in new areas, such as medicine, education, bio-printing, food printing, art and architecture, are also encouraged. The Journal addresses the important questions surrounding this powerful and growing field, including issues in policy and law, intellectual property, data standards, safety and liability, environmental impact, social, economic, and humanitarian implications, and emerging business models at the industrial and consumer scales.
期刊最新文献
Experimental Study on Interfacial Shear Behavior of 3D Printed Recycled Mortar. Characterizing the Effect of Filament Moisture on Tensile Properties and Morphology of Fused Deposition Modeled Polylactic Acid/Polybutylene Succinate Parts. On the Development of Smart Framework for Printability Maps in Additive Manufacturing of AISI 316L Stainless Steel. Rapid Fabrication of Silica Microlens Arrays via Glass 3D Printing. Simulation of Binder Jetting and Analysis of Magnesium Alloy Bonding Mechanism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1