Robert Marty , Seth Goodman , Michael LeFew , Carrie Dolan , Ariel BenYishay , Daniel Runfola
{"title":"在空间不精确条件下评估中国援助对布隆迪和卢旺达植被土地覆盖的因果影响","authors":"Robert Marty , Seth Goodman , Michael LeFew , Carrie Dolan , Ariel BenYishay , Daniel Runfola","doi":"10.1016/j.deveng.2018.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>There has been considerable debate regarding the efficacy of international aid in meeting the dual goals of human development and environmental sustainability. Many donors have sought to engage with this challenge by introducing environmental safeguard and monitoring initiatives; however, evidence on the success of these interventions is limited. Evaluating aid is a particular challenge in the case of donors that do not disclose information on the nature, geographic location, or extents of their interventions. In such cases, new methods that extract and geoparse data on the activities of opaque donors through the manual interpretation of thousands of news and other articles allow us to investigate the impacts of these activities. However, residual spatial uncertainty in these data remains a potential source of bias. In this article, we apply and discuss a Geographic Simulation and Extrapolation (GeoSIMEX) approach to mitigate the spatial imprecision inherent in geoparsed data. In conjunction with GeoSIMEX, we test and contrast multiple approaches to reducing the imprecision of aid, including high-assumption cases in which other covariates (i.e., nighttime lights) are leveraged to allocate aid. In our application, we find that methods which do not account for spatial imprecision find statistically significant relationships between Chinese aid and vegetation change; after accounting for spatial uncertainty, findings are similar for Rwanda and inconclusive for Burundi.</p></div>","PeriodicalId":37901,"journal":{"name":"Development Engineering","volume":"4 ","pages":"Article 100038"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.deveng.2018.11.001","citationCount":"6","resultStr":"{\"title\":\"Assessing the causal impact of Chinese aid on vegetative land cover in Burundi and Rwanda under conditions of spatial imprecision\",\"authors\":\"Robert Marty , Seth Goodman , Michael LeFew , Carrie Dolan , Ariel BenYishay , Daniel Runfola\",\"doi\":\"10.1016/j.deveng.2018.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>There has been considerable debate regarding the efficacy of international aid in meeting the dual goals of human development and environmental sustainability. Many donors have sought to engage with this challenge by introducing environmental safeguard and monitoring initiatives; however, evidence on the success of these interventions is limited. Evaluating aid is a particular challenge in the case of donors that do not disclose information on the nature, geographic location, or extents of their interventions. In such cases, new methods that extract and geoparse data on the activities of opaque donors through the manual interpretation of thousands of news and other articles allow us to investigate the impacts of these activities. However, residual spatial uncertainty in these data remains a potential source of bias. In this article, we apply and discuss a Geographic Simulation and Extrapolation (GeoSIMEX) approach to mitigate the spatial imprecision inherent in geoparsed data. In conjunction with GeoSIMEX, we test and contrast multiple approaches to reducing the imprecision of aid, including high-assumption cases in which other covariates (i.e., nighttime lights) are leveraged to allocate aid. In our application, we find that methods which do not account for spatial imprecision find statistically significant relationships between Chinese aid and vegetation change; after accounting for spatial uncertainty, findings are similar for Rwanda and inconclusive for Burundi.</p></div>\",\"PeriodicalId\":37901,\"journal\":{\"name\":\"Development Engineering\",\"volume\":\"4 \",\"pages\":\"Article 100038\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.deveng.2018.11.001\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Development Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352728517301173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Economics, Econometrics and Finance\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Development Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352728517301173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
Assessing the causal impact of Chinese aid on vegetative land cover in Burundi and Rwanda under conditions of spatial imprecision
There has been considerable debate regarding the efficacy of international aid in meeting the dual goals of human development and environmental sustainability. Many donors have sought to engage with this challenge by introducing environmental safeguard and monitoring initiatives; however, evidence on the success of these interventions is limited. Evaluating aid is a particular challenge in the case of donors that do not disclose information on the nature, geographic location, or extents of their interventions. In such cases, new methods that extract and geoparse data on the activities of opaque donors through the manual interpretation of thousands of news and other articles allow us to investigate the impacts of these activities. However, residual spatial uncertainty in these data remains a potential source of bias. In this article, we apply and discuss a Geographic Simulation and Extrapolation (GeoSIMEX) approach to mitigate the spatial imprecision inherent in geoparsed data. In conjunction with GeoSIMEX, we test and contrast multiple approaches to reducing the imprecision of aid, including high-assumption cases in which other covariates (i.e., nighttime lights) are leveraged to allocate aid. In our application, we find that methods which do not account for spatial imprecision find statistically significant relationships between Chinese aid and vegetation change; after accounting for spatial uncertainty, findings are similar for Rwanda and inconclusive for Burundi.
Development EngineeringEconomics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
4.90
自引率
0.00%
发文量
11
审稿时长
31 weeks
期刊介绍:
Development Engineering: The Journal of Engineering in Economic Development (Dev Eng) is an open access, interdisciplinary journal applying engineering and economic research to the problems of poverty. Published studies must present novel research motivated by a specific global development problem. The journal serves as a bridge between engineers, economists, and other scientists involved in research on human, social, and economic development. Specific topics include: • Engineering research in response to unique constraints imposed by poverty. • Assessment of pro-poor technology solutions, including field performance, consumer adoption, and end-user impacts. • Novel technologies or tools for measuring behavioral, economic, and social outcomes in low-resource settings. • Hypothesis-generating research that explores technology markets and the role of innovation in economic development. • Lessons from the field, especially null results from field trials and technical failure analyses. • Rigorous analysis of existing development "solutions" through an engineering or economic lens. Although the journal focuses on quantitative, scientific approaches, it is intended to be suitable for a wider audience of development practitioners and policy makers, with evidence that can be used to improve decision-making. It also will be useful for engineering and applied economics faculty who conduct research or teach in "technology for development."