线性时间序列中重尾的诊断检查

Q Mathematics Statistical Methodology Pub Date : 2015-05-01 DOI:10.1016/j.stamet.2014.11.001
Tony Siu Tung Wong
{"title":"线性时间序列中重尾的诊断检查","authors":"Tony Siu Tung Wong","doi":"10.1016/j.stamet.2014.11.001","DOIUrl":null,"url":null,"abstract":"<div><p>Justification of heavy tail is an important open problem. A systematic approach is proposed to verify heavy tail in linear time series<span>. It consists of three parts, each of which is guided by statistical tests. The analysis is supplemented by an application to ozone concentration. The methodology has the advantage that the threshold selection is data-driven. Simulations show that test results are accurate even under model misspecification. The power is good under two heavy-tailed alternatives. The test is invariant when the time series clusters at extreme level in the study of the max-autoregressive process. It also gives a preliminary measure of tail heaviness if the underlying process is heavy-tailed.</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"24 ","pages":"Pages 1-11"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.11.001","citationCount":"1","resultStr":"{\"title\":\"Diagnostic check for heavy tail in linear time series\",\"authors\":\"Tony Siu Tung Wong\",\"doi\":\"10.1016/j.stamet.2014.11.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Justification of heavy tail is an important open problem. A systematic approach is proposed to verify heavy tail in linear time series<span>. It consists of three parts, each of which is guided by statistical tests. The analysis is supplemented by an application to ozone concentration. The methodology has the advantage that the threshold selection is data-driven. Simulations show that test results are accurate even under model misspecification. The power is good under two heavy-tailed alternatives. The test is invariant when the time series clusters at extreme level in the study of the max-autoregressive process. It also gives a preliminary measure of tail heaviness if the underlying process is heavy-tailed.</span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"24 \",\"pages\":\"Pages 1-11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2014.11.001\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S157231271400077X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S157231271400077X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

重尾的正当性是一个重要的开放性问题。提出了一种验证线性时间序列重尾的系统方法。它由三部分组成,每一部分都以统计检验为指导。对臭氧浓度的应用补充了分析。该方法的优点是阈值选择是数据驱动的。仿真结果表明,在模型不规范的情况下,测试结果是准确的。在两种重尾替代方案下,电力很好。在研究最大自回归过程时,当时间序列聚类在极值水平时,检验是不变的。如果底层过程是重尾的,它也给出了尾重的初步度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diagnostic check for heavy tail in linear time series

Justification of heavy tail is an important open problem. A systematic approach is proposed to verify heavy tail in linear time series. It consists of three parts, each of which is guided by statistical tests. The analysis is supplemented by an application to ozone concentration. The methodology has the advantage that the threshold selection is data-driven. Simulations show that test results are accurate even under model misspecification. The power is good under two heavy-tailed alternatives. The test is invariant when the time series clusters at extreme level in the study of the max-autoregressive process. It also gives a preliminary measure of tail heaviness if the underlying process is heavy-tailed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
期刊最新文献
Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Validity of estimated prevalence of decreased kidney function and renal replacement therapy from primary care electronic health records compared with national survey and registry data in the United Kingdom. Editorial Board Nonparametric M-estimation for right censored regression model with stationary ergodic data Symmetric directional false discovery rate control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1