{"title":"随机波动模型的一些性质是由波动序列引起的","authors":"M. Rezapour , N. Balakrishnan","doi":"10.1016/j.stamet.2014.11.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we consider a heavy-tailed stochastic volatility model <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>t</mi><mo>∈</mo><mi>Z</mi></math></span>, where the volatility sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> and the iid noise sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> are assumed to be independent, <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> is regularly varying with index <span><math><mi>α</mi><mo>></mo><mn>0</mn><mspace></mspace></math></span>, and the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>’s to have moments of order less than <span><math><mi>α</mi><mo>/</mo><mn>2</mn></math></span>. Here, we prove that, under certain conditions, the stochastic volatility model inherits the anti-clustering condition of <span><math><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> from the volatility sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span>. Next, we consider a stochastic volatility model in which <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span><span> is an exponential AR(2) process with regularly varying marginals and show that this model satisfies the regular variation, mixing and anti-clustering conditions in Davis and Hsing (1995).</span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"24 ","pages":"Pages 28-36"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2014.11.002","citationCount":"0","resultStr":"{\"title\":\"Some properties of stochastic volatility model that are induced by its volatility sequence\",\"authors\":\"M. Rezapour , N. Balakrishnan\",\"doi\":\"10.1016/j.stamet.2014.11.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we consider a heavy-tailed stochastic volatility model <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, <span><math><mi>t</mi><mo>∈</mo><mi>Z</mi></math></span>, where the volatility sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> and the iid noise sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> are assumed to be independent, <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> is regularly varying with index <span><math><mi>α</mi><mo>></mo><mn>0</mn><mspace></mspace></math></span>, and the <span><math><msub><mrow><mi>Z</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>’s to have moments of order less than <span><math><mi>α</mi><mo>/</mo><mn>2</mn></math></span>. Here, we prove that, under certain conditions, the stochastic volatility model inherits the anti-clustering condition of <span><math><mrow><mo>(</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span> from the volatility sequence <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span>. Next, we consider a stochastic volatility model in which <span><math><mrow><mo>(</mo><msub><mrow><mi>σ</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>)</mo></mrow></math></span><span> is an exponential AR(2) process with regularly varying marginals and show that this model satisfies the regular variation, mixing and anti-clustering conditions in Davis and Hsing (1995).</span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"24 \",\"pages\":\"Pages 28-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2014.11.002\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312714000884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312714000884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
Some properties of stochastic volatility model that are induced by its volatility sequence
In this paper, we consider a heavy-tailed stochastic volatility model , , where the volatility sequence and the iid noise sequence are assumed to be independent, is regularly varying with index , and the ’s to have moments of order less than . Here, we prove that, under certain conditions, the stochastic volatility model inherits the anti-clustering condition of from the volatility sequence . Next, we consider a stochastic volatility model in which is an exponential AR(2) process with regularly varying marginals and show that this model satisfies the regular variation, mixing and anti-clustering conditions in Davis and Hsing (1995).
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.