扩展Farlie-Gumbel-Morgenstern双变量logistic分布引起的有序统计量的伴随性及其在估计中的应用

Q Mathematics Statistical Methodology Pub Date : 2015-07-01 DOI:10.1016/j.stamet.2015.02.002
Anne Philip, P. Yageen Thomas
{"title":"扩展Farlie-Gumbel-Morgenstern双变量logistic分布引起的有序统计量的伴随性及其在估计中的应用","authors":"Anne Philip,&nbsp;P. Yageen Thomas","doi":"10.1016/j.stamet.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate </span>logistic distribution<span><span> and develop its distribution theory. Using ranked set sample obtained from the above distribution, </span>unbiased estimators<span> of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.</span></span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"25 ","pages":"Pages 59-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2015.02.002","citationCount":"10","resultStr":"{\"title\":\"On concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and its application in estimation\",\"authors\":\"Anne Philip,&nbsp;P. Yageen Thomas\",\"doi\":\"10.1016/j.stamet.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate </span>logistic distribution<span><span> and develop its distribution theory. Using ranked set sample obtained from the above distribution, </span>unbiased estimators<span> of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.</span></span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"25 \",\"pages\":\"Pages 59-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2015.02.002\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312715000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312715000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 10

摘要

本文考虑了广义Farlie-Gumbel-Morgenstern二元logistic分布所产生的序统计量的伴随性,并发展了其分布理论。使用从上述分布中获得的排序集样本,生成与其中涉及的研究变量相关的参数的无偏估计量。基于这些参数的排序集样本的观测结果,也得到了最佳的线性无偏估计(BLUEs)。还评估了blue相对于生成的各自无偏估计器的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and its application in estimation

In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and develop its distribution theory. Using ranked set sample obtained from the above distribution, unbiased estimators of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methodology
Statistical Methodology STATISTICS & PROBABILITY-
CiteScore
0.59
自引率
0.00%
发文量
0
期刊介绍: Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.
期刊最新文献
Virulence Factors, Capsular Serotypes and Antimicrobial Resistance of Hypervirulent Klebsiella pneumoniae and Classical Klebsiella pneumoniae in Southeast Iran. Validity of estimated prevalence of decreased kidney function and renal replacement therapy from primary care electronic health records compared with national survey and registry data in the United Kingdom. Editorial Board Nonparametric M-estimation for right censored regression model with stationary ergodic data Symmetric directional false discovery rate control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1