{"title":"扩展Farlie-Gumbel-Morgenstern双变量logistic分布引起的有序统计量的伴随性及其在估计中的应用","authors":"Anne Philip, P. Yageen Thomas","doi":"10.1016/j.stamet.2015.02.002","DOIUrl":null,"url":null,"abstract":"<div><p><span>In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate </span>logistic distribution<span><span> and develop its distribution theory. Using ranked set sample obtained from the above distribution, </span>unbiased estimators<span> of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.</span></span></p></div>","PeriodicalId":48877,"journal":{"name":"Statistical Methodology","volume":"25 ","pages":"Pages 59-73"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.stamet.2015.02.002","citationCount":"10","resultStr":"{\"title\":\"On concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and its application in estimation\",\"authors\":\"Anne Philip, P. Yageen Thomas\",\"doi\":\"10.1016/j.stamet.2015.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate </span>logistic distribution<span><span> and develop its distribution theory. Using ranked set sample obtained from the above distribution, </span>unbiased estimators<span> of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.</span></span></p></div>\",\"PeriodicalId\":48877,\"journal\":{\"name\":\"Statistical Methodology\",\"volume\":\"25 \",\"pages\":\"Pages 59-73\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.stamet.2015.02.002\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1572312715000143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methodology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1572312715000143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Mathematics","Score":null,"Total":0}
On concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and its application in estimation
In this paper, we consider concomitants of order statistics arising from the extended Farlie–Gumbel–Morgenstern bivariate logistic distribution and develop its distribution theory. Using ranked set sample obtained from the above distribution, unbiased estimators of the parameters associated with the study variate involved in it are generated. The best linear unbiased estimators (BLUEs) based on observations in the ranked set sample of those parameters as well have been derived. The efficiencies of the BLUEs relative to the respective unbiased estimators generated also have been evaluated.
期刊介绍:
Statistical Methodology aims to publish articles of high quality reflecting the varied facets of contemporary statistical theory as well as of significant applications. In addition to helping to stimulate research, the journal intends to bring about interactions among statisticians and scientists in other disciplines broadly interested in statistical methodology. The journal focuses on traditional areas such as statistical inference, multivariate analysis, design of experiments, sampling theory, regression analysis, re-sampling methods, time series, nonparametric statistics, etc., and also gives special emphasis to established as well as emerging applied areas.