Shelley Linder, Benjamin J. M. Jarrett, Philip Fanning, Rufus Isaacs, Marianna Sz?cs
{"title":"本地寄生蜂在入侵寄主上的表现在三代以上的选择中收益有限","authors":"Shelley Linder, Benjamin J. M. Jarrett, Philip Fanning, Rufus Isaacs, Marianna Sz?cs","doi":"10.1111/eva.13504","DOIUrl":null,"url":null,"abstract":"<p>Co-evolved natural enemies provide sustainable and long-term control of numerous invasive insect pests, but the introduction of such enemies has declined sharply due to increasing regulations. In the absence of co-evolved natural enemies, native species may attack exotic invasive pests; however, they usually lack adaptations to control novel hosts effectively. We investigated the potential of two native pupal parasitoids, <i>Pachycrepoideus vindemmiae</i> and <i>Trichopria drosophilae</i>, to increase their developmental success on the invasive <i>Drosophila suzukii</i>. Replicated populations of the two parasitoids were subjected to 10 generations of laboratory selection on <i>D. suzukii</i> with <i>Drosophila melanogaster</i> serving as the co-evolved host. We assessed developmental success of selected and control lines in generations 0, 3, and 10. Changes in host preference, sex ratio, development time, and body size were measured to evaluate correlated responses with adaptation. Both parasitoid species responded rapidly to selection by significantly increasing their developmental success on the novel host within three generations, which remained constant for seven additional generations without further improvement. The generalist parasitoid species <i>P. vindemmiae</i> was able to reach similar developmental success as the control populations, while the performance of the more specialized parasitoid <i>T. drosophilae</i> remained lower on the novel than on the co-evolved host. There was no increase in preference towards the novel host over 10 generations of selection nor were there changes in development time or body size associated with adaptation in either parasitoid species. The sex ratio became less female-biased for both parasitoids after three generations of selection but rebounded in <i>P. vindemmiae</i> by generation 10. These results suggest that a few generations of selection may be sufficient to improve the performance of native parasitoids on invasive hosts, but with limits to the degree of improvement for managing invasive pests when exotic co-evolved natural enemies are not available.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"15 12","pages":"2113-2124"},"PeriodicalIF":3.5000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13504","citationCount":"2","resultStr":"{\"title\":\"Limited gains in native parasitoid performance on an invasive host beyond three generations of selection\",\"authors\":\"Shelley Linder, Benjamin J. M. Jarrett, Philip Fanning, Rufus Isaacs, Marianna Sz?cs\",\"doi\":\"10.1111/eva.13504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Co-evolved natural enemies provide sustainable and long-term control of numerous invasive insect pests, but the introduction of such enemies has declined sharply due to increasing regulations. In the absence of co-evolved natural enemies, native species may attack exotic invasive pests; however, they usually lack adaptations to control novel hosts effectively. We investigated the potential of two native pupal parasitoids, <i>Pachycrepoideus vindemmiae</i> and <i>Trichopria drosophilae</i>, to increase their developmental success on the invasive <i>Drosophila suzukii</i>. Replicated populations of the two parasitoids were subjected to 10 generations of laboratory selection on <i>D. suzukii</i> with <i>Drosophila melanogaster</i> serving as the co-evolved host. We assessed developmental success of selected and control lines in generations 0, 3, and 10. Changes in host preference, sex ratio, development time, and body size were measured to evaluate correlated responses with adaptation. Both parasitoid species responded rapidly to selection by significantly increasing their developmental success on the novel host within three generations, which remained constant for seven additional generations without further improvement. The generalist parasitoid species <i>P. vindemmiae</i> was able to reach similar developmental success as the control populations, while the performance of the more specialized parasitoid <i>T. drosophilae</i> remained lower on the novel than on the co-evolved host. There was no increase in preference towards the novel host over 10 generations of selection nor were there changes in development time or body size associated with adaptation in either parasitoid species. The sex ratio became less female-biased for both parasitoids after three generations of selection but rebounded in <i>P. vindemmiae</i> by generation 10. These results suggest that a few generations of selection may be sufficient to improve the performance of native parasitoids on invasive hosts, but with limits to the degree of improvement for managing invasive pests when exotic co-evolved natural enemies are not available.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"15 12\",\"pages\":\"2113-2124\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eva.13504\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.13504\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.13504","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
Limited gains in native parasitoid performance on an invasive host beyond three generations of selection
Co-evolved natural enemies provide sustainable and long-term control of numerous invasive insect pests, but the introduction of such enemies has declined sharply due to increasing regulations. In the absence of co-evolved natural enemies, native species may attack exotic invasive pests; however, they usually lack adaptations to control novel hosts effectively. We investigated the potential of two native pupal parasitoids, Pachycrepoideus vindemmiae and Trichopria drosophilae, to increase their developmental success on the invasive Drosophila suzukii. Replicated populations of the two parasitoids were subjected to 10 generations of laboratory selection on D. suzukii with Drosophila melanogaster serving as the co-evolved host. We assessed developmental success of selected and control lines in generations 0, 3, and 10. Changes in host preference, sex ratio, development time, and body size were measured to evaluate correlated responses with adaptation. Both parasitoid species responded rapidly to selection by significantly increasing their developmental success on the novel host within three generations, which remained constant for seven additional generations without further improvement. The generalist parasitoid species P. vindemmiae was able to reach similar developmental success as the control populations, while the performance of the more specialized parasitoid T. drosophilae remained lower on the novel than on the co-evolved host. There was no increase in preference towards the novel host over 10 generations of selection nor were there changes in development time or body size associated with adaptation in either parasitoid species. The sex ratio became less female-biased for both parasitoids after three generations of selection but rebounded in P. vindemmiae by generation 10. These results suggest that a few generations of selection may be sufficient to improve the performance of native parasitoids on invasive hosts, but with limits to the degree of improvement for managing invasive pests when exotic co-evolved natural enemies are not available.
期刊介绍:
Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.