{"title":"放线菌降解雌激素必需β-氧化基因及其代谢产物的鉴定","authors":"Tsun-Hsien Hsiao, Tzong-Huei Lee, Meng-Rong Chuang, Po-Hsiang Wang, Menghsiao Meng, Masae Horinouchi, Toshiaki Hayashi, Yi-Lung Chen, Yin-Ru Chiang","doi":"10.1111/1751-7915.13921","DOIUrl":null,"url":null,"abstract":"<p>Steroidal oestrogens (C<sub>18</sub>) are contaminants receiving increasing attention due to their endocrine-disrupting activities at sub-nanomolar concentrations. Although oestrogens can be eliminated through photodegradation, microbial function is critical for removing oestrogens from ecosystems devoid of sunlight exposure including activated sludge, soils and aquatic sediments. Actinobacteria were found to be key oestrogen degraders in manure-contaminated soils and estuarine sediments. Previously, we used the actinobacterium <i>Rhodococcus</i> sp. strain B50 as a model microorganism to identify two oxygenase genes, <i>aedA</i> and <i>aedB</i>, involved in the activation and subsequent cleavage of the estrogenic A-ring respectively. However, genes responsible for the downstream degradation of oestrogen A/B-rings remained completely unknown. In this study, we employed tiered comparative transcriptomics, gene disruption experiments and mass spectrometry-based metabolite profile analysis to identify oestrogen catabolic genes. We observed the up-regulation of thiolase-encoding <i>aedF</i> and <i>aedK</i> in the transcriptome of strain B50 grown with oestrone. Consistently, two downstream oestrogenic metabolites, 5-oxo-4-norestrogenic acid (C<sub>17</sub>) and 2,3,4-trinorestrogenic acid (C<sub>15</sub>), were accumulated in <i>aedF-</i> and <i>aedK</i>-disrupted strain B50 cultures. Disruption of <i>fadD3</i> [3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP)-coenzyme A-ligase gene] in strain B50 resulted in apparent HIP accumulation in oestrone-fed cultures, indicating the essential role of <i>fadD3</i> in actinobacterial oestrogen degradation. In addition, we detected a unique <i>meta</i>-cleavage product, 4,5-<i>seco</i>-estrogenic acid (C<sub>18</sub>), during actinobacterial oestrogen degradation. Differentiating the oestrogenic metabolite profile and degradation genes of actinobacteria and proteobacteria enables the cost-effective and time-saving identification of potential oestrogen degraders in various ecosystems through liquid chromatography–mass spectrometry analysis and polymerase chain reaction-based functional assays.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"15 3","pages":"949-966"},"PeriodicalIF":4.8000,"publicationDate":"2021-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13921","citationCount":"6","resultStr":"{\"title\":\"Identification of essential β-oxidation genes and corresponding metabolites for oestrogen degradation by actinobacteria\",\"authors\":\"Tsun-Hsien Hsiao, Tzong-Huei Lee, Meng-Rong Chuang, Po-Hsiang Wang, Menghsiao Meng, Masae Horinouchi, Toshiaki Hayashi, Yi-Lung Chen, Yin-Ru Chiang\",\"doi\":\"10.1111/1751-7915.13921\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Steroidal oestrogens (C<sub>18</sub>) are contaminants receiving increasing attention due to their endocrine-disrupting activities at sub-nanomolar concentrations. Although oestrogens can be eliminated through photodegradation, microbial function is critical for removing oestrogens from ecosystems devoid of sunlight exposure including activated sludge, soils and aquatic sediments. Actinobacteria were found to be key oestrogen degraders in manure-contaminated soils and estuarine sediments. Previously, we used the actinobacterium <i>Rhodococcus</i> sp. strain B50 as a model microorganism to identify two oxygenase genes, <i>aedA</i> and <i>aedB</i>, involved in the activation and subsequent cleavage of the estrogenic A-ring respectively. However, genes responsible for the downstream degradation of oestrogen A/B-rings remained completely unknown. In this study, we employed tiered comparative transcriptomics, gene disruption experiments and mass spectrometry-based metabolite profile analysis to identify oestrogen catabolic genes. We observed the up-regulation of thiolase-encoding <i>aedF</i> and <i>aedK</i> in the transcriptome of strain B50 grown with oestrone. Consistently, two downstream oestrogenic metabolites, 5-oxo-4-norestrogenic acid (C<sub>17</sub>) and 2,3,4-trinorestrogenic acid (C<sub>15</sub>), were accumulated in <i>aedF-</i> and <i>aedK</i>-disrupted strain B50 cultures. Disruption of <i>fadD3</i> [3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP)-coenzyme A-ligase gene] in strain B50 resulted in apparent HIP accumulation in oestrone-fed cultures, indicating the essential role of <i>fadD3</i> in actinobacterial oestrogen degradation. In addition, we detected a unique <i>meta</i>-cleavage product, 4,5-<i>seco</i>-estrogenic acid (C<sub>18</sub>), during actinobacterial oestrogen degradation. Differentiating the oestrogenic metabolite profile and degradation genes of actinobacteria and proteobacteria enables the cost-effective and time-saving identification of potential oestrogen degraders in various ecosystems through liquid chromatography–mass spectrometry analysis and polymerase chain reaction-based functional assays.</p>\",\"PeriodicalId\":49145,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"15 3\",\"pages\":\"949-966\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1751-7915.13921\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13921\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13921","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Identification of essential β-oxidation genes and corresponding metabolites for oestrogen degradation by actinobacteria
Steroidal oestrogens (C18) are contaminants receiving increasing attention due to their endocrine-disrupting activities at sub-nanomolar concentrations. Although oestrogens can be eliminated through photodegradation, microbial function is critical for removing oestrogens from ecosystems devoid of sunlight exposure including activated sludge, soils and aquatic sediments. Actinobacteria were found to be key oestrogen degraders in manure-contaminated soils and estuarine sediments. Previously, we used the actinobacterium Rhodococcus sp. strain B50 as a model microorganism to identify two oxygenase genes, aedA and aedB, involved in the activation and subsequent cleavage of the estrogenic A-ring respectively. However, genes responsible for the downstream degradation of oestrogen A/B-rings remained completely unknown. In this study, we employed tiered comparative transcriptomics, gene disruption experiments and mass spectrometry-based metabolite profile analysis to identify oestrogen catabolic genes. We observed the up-regulation of thiolase-encoding aedF and aedK in the transcriptome of strain B50 grown with oestrone. Consistently, two downstream oestrogenic metabolites, 5-oxo-4-norestrogenic acid (C17) and 2,3,4-trinorestrogenic acid (C15), were accumulated in aedF- and aedK-disrupted strain B50 cultures. Disruption of fadD3 [3aα-H-4α(3'-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP)-coenzyme A-ligase gene] in strain B50 resulted in apparent HIP accumulation in oestrone-fed cultures, indicating the essential role of fadD3 in actinobacterial oestrogen degradation. In addition, we detected a unique meta-cleavage product, 4,5-seco-estrogenic acid (C18), during actinobacterial oestrogen degradation. Differentiating the oestrogenic metabolite profile and degradation genes of actinobacteria and proteobacteria enables the cost-effective and time-saving identification of potential oestrogen degraders in various ecosystems through liquid chromatography–mass spectrometry analysis and polymerase chain reaction-based functional assays.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes