用于低温光驱动水气移位反应的等离子体铜纳米粒子

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2023-02-03 DOI:10.1002/anie.202219299
Jiaqi Zhao, Ya Bai, Zhenhua Li, Dr. Jinjia Liu, Dr. Wei Wang, Pu Wang, Dr. Bei Yang, Dr. Run Shi, Prof. Geoffrey I. N. Waterhouse, Prof. Xiao-Dong Wen, Prof. Qing Dai, Prof. Tierui Zhang
{"title":"用于低温光驱动水气移位反应的等离子体铜纳米粒子","authors":"Jiaqi Zhao,&nbsp;Ya Bai,&nbsp;Zhenhua Li,&nbsp;Dr. Jinjia Liu,&nbsp;Dr. Wei Wang,&nbsp;Pu Wang,&nbsp;Dr. Bei Yang,&nbsp;Dr. Run Shi,&nbsp;Prof. Geoffrey I. N. Waterhouse,&nbsp;Prof. Xiao-Dong Wen,&nbsp;Prof. Qing Dai,&nbsp;Prof. Tierui Zhang","doi":"10.1002/anie.202219299","DOIUrl":null,"url":null,"abstract":"<p>The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H<sub>2</sub> under UV/Vis irradiation (1.4 W cm<sup>−2</sup>) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H<sub>2</sub>O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H<sub>2</sub>. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction\",\"authors\":\"Jiaqi Zhao,&nbsp;Ya Bai,&nbsp;Zhenhua Li,&nbsp;Dr. Jinjia Liu,&nbsp;Dr. Wei Wang,&nbsp;Pu Wang,&nbsp;Dr. Bei Yang,&nbsp;Dr. Run Shi,&nbsp;Prof. Geoffrey I. N. Waterhouse,&nbsp;Prof. Xiao-Dong Wen,&nbsp;Prof. Qing Dai,&nbsp;Prof. Tierui Zhang\",\"doi\":\"10.1002/anie.202219299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H<sub>2</sub> under UV/Vis irradiation (1.4 W cm<sup>−2</sup>) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H<sub>2</sub>O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H<sub>2</sub>. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2023-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202219299\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202219299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

热催化中水分子的活化通常需要较高的温度,这是低温水气转换反应(WGSR)催化剂开发的一个障碍。等离子体光催化允许在低温下通过产生光诱导的热电子激活水。本文报道了一种具有优异性能的层状双氢氧化物衍生铜催化剂(LD-Cu),用于低温光驱动WGSR。与黑暗条件下相比,LD-Cu在UV/Vis照射下为WGSR生成H2提供了较低的活化能(1.4 W cm−2)。详细的实验研究表明,高度分散的Cu纳米颗粒在光吸收过程中产生了大量的热电子,通过羧基途径促进*H2O解离和*H结合,从而有效地生成H2。结果表明,利用等离子体现象开发光驱动的低温WGSR催化剂是有益的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmonic Cu Nanoparticles for the Low-temperature Photo-driven Water-gas Shift Reaction

The activation of water molecules in thermal catalysis typically requires high temperatures, representing an obstacle to catalyst development for the low-temperature water-gas shift reaction (WGSR). Plasmonic photocatalysis allows activation of water at low temperatures through the generation of light-induced hot electrons. Herein, we report a layered double hydroxide-derived copper catalyst (LD-Cu) with outstanding performance for the low-temperature photo-driven WGSR. LD-Cu offered a lower activation energy for WGSR to H2 under UV/Vis irradiation (1.4 W cm−2) compared to under dark conditions. Detailed experimental studies revealed that highly dispersed Cu nanoparticles created an abundance of hot electrons during light absorption, which promoted *H2O dissociation and *H combination via a carboxyl pathway, leading to the efficient production of H2. Results demonstrate the benefits of exploiting plasmonic phenomena in the development of photo-driven low-temperature WGSR catalysts.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Reversible Hydrogen Acceptor–Donor Enables Relay Mechanism for Nitrate-to-Ammonia Electrocatalysis A Grafting Hydrogen-bonded Organic Framework for Benchmark Selectivity of C2H2/CO2 Separation under Ambient Conditions A Proteomics Pipeline for Generating Clinical Grade Biomarker Candidates from Data-Independent Acquisition Mass Spectrometry (DIA-MS) Discovery [5]Helicene Based π-Conjugated Macrocycles with Persistent Figure-Eight and Möbius Shapes: Efficient Synthesis, Chiral Resolution and Bright Circularly Polarized Luminescence Formamidinium Incorporates into Rb-based Non-perovskite Phases in Solar Cell Formulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1