Cun-Zhao SHI , Chun-Heng WANG , Bai-Hua XIAO , Yang ZHANG , Song GAO
{"title":"基于多尺度图匹配的自然场景字符识别核","authors":"Cun-Zhao SHI , Chun-Heng WANG , Bai-Hua XIAO , Yang ZHANG , Song GAO","doi":"10.1016/S1874-1029(14)60006-9","DOIUrl":null,"url":null,"abstract":"<div><p>Recognizing characters extracted from natural scene images is quite challenging due to the high degree of intraclass variation. In this paper, we propose a multi-scale graph-matching based kernel for scene character recognition. In order to capture the inherently distinctive structures of characters, each image is represented by several graphs associated with multi-scale image grids. The similarity between two images is thus defined as the optimum energy by matching two graphs (images), which finds the best match for each node in the graph while also preserving the spatial consistency across adjacent nodes. The computed similarity is suitable to construct a kernel for support vector machine (SVM). Multiple kernels acquired by matching graphs with multi-scale grids are combined so that the final kernel is more robust. Experimental results on challenging Chars74k and ICDAR03-CH datasets show that the proposed method performs better than the state of the art methods.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 4","pages":"Pages 751-756"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60006-9","citationCount":"8","resultStr":"{\"title\":\"Multi-scale Graph-matching Based Kernel for Character Recognition from Natural Scenes\",\"authors\":\"Cun-Zhao SHI , Chun-Heng WANG , Bai-Hua XIAO , Yang ZHANG , Song GAO\",\"doi\":\"10.1016/S1874-1029(14)60006-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recognizing characters extracted from natural scene images is quite challenging due to the high degree of intraclass variation. In this paper, we propose a multi-scale graph-matching based kernel for scene character recognition. In order to capture the inherently distinctive structures of characters, each image is represented by several graphs associated with multi-scale image grids. The similarity between two images is thus defined as the optimum energy by matching two graphs (images), which finds the best match for each node in the graph while also preserving the spatial consistency across adjacent nodes. The computed similarity is suitable to construct a kernel for support vector machine (SVM). Multiple kernels acquired by matching graphs with multi-scale grids are combined so that the final kernel is more robust. Experimental results on challenging Chars74k and ICDAR03-CH datasets show that the proposed method performs better than the state of the art methods.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 4\",\"pages\":\"Pages 751-756\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60006-9\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914600069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914600069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
Multi-scale Graph-matching Based Kernel for Character Recognition from Natural Scenes
Recognizing characters extracted from natural scene images is quite challenging due to the high degree of intraclass variation. In this paper, we propose a multi-scale graph-matching based kernel for scene character recognition. In order to capture the inherently distinctive structures of characters, each image is represented by several graphs associated with multi-scale image grids. The similarity between two images is thus defined as the optimum energy by matching two graphs (images), which finds the best match for each node in the graph while also preserving the spatial consistency across adjacent nodes. The computed similarity is suitable to construct a kernel for support vector machine (SVM). Multiple kernels acquired by matching graphs with multi-scale grids are combined so that the final kernel is more robust. Experimental results on challenging Chars74k and ICDAR03-CH datasets show that the proposed method performs better than the state of the art methods.
自动化学报Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍:
ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.