欠驱动桥式起重机直接摆动约束轨迹规划方法

Q2 Computer Science 自动化学报 Pub Date : 2014-11-01 DOI:10.1016/S1874-1029(14)60397-9
Peng-Cheng WANG , Yong-Chun FANG , Zi-Ya JIANG
{"title":"欠驱动桥式起重机直接摆动约束轨迹规划方法","authors":"Peng-Cheng WANG ,&nbsp;Yong-Chun FANG ,&nbsp;Zi-Ya JIANG","doi":"10.1016/S1874-1029(14)60397-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a novel swing constraint-based trajectory planning method for nonlinear overhead crane systems. To enhance the efficiency and security of the transportation process, some desired trajectories are designed to achieve the following merits: 1) leading the trolley to reach the destination sufficiently fast; 2) keeping the payload swing in an acceptable domain; 3) eliminating the residue swing when the trolley stops at the desired position. Specifically, the trajectories are divided into three stages. For each stage, the desired curve of the swing angle is directly constructed in accordance with anti-swing and zero-residual swing requirements, based on which the trolley trajectory is then obtained by analyzing the nonlinear kinematics of the crane system. An optimization mechanism is introduced to make intelligent compromises among the indices of transportation time, maximal swing angle, and so on. Both simulation and experimental results are provided to demonstrate the performance of the proposed direct swing constraint-based trajectory planning method.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 11","pages":"Pages 2414-2419"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60397-9","citationCount":"5","resultStr":"{\"title\":\"A Direct Swing Constraint-based Trajectory Planning Method for Underactuated Overhead Cranes\",\"authors\":\"Peng-Cheng WANG ,&nbsp;Yong-Chun FANG ,&nbsp;Zi-Ya JIANG\",\"doi\":\"10.1016/S1874-1029(14)60397-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a novel swing constraint-based trajectory planning method for nonlinear overhead crane systems. To enhance the efficiency and security of the transportation process, some desired trajectories are designed to achieve the following merits: 1) leading the trolley to reach the destination sufficiently fast; 2) keeping the payload swing in an acceptable domain; 3) eliminating the residue swing when the trolley stops at the desired position. Specifically, the trajectories are divided into three stages. For each stage, the desired curve of the swing angle is directly constructed in accordance with anti-swing and zero-residual swing requirements, based on which the trolley trajectory is then obtained by analyzing the nonlinear kinematics of the crane system. An optimization mechanism is introduced to make intelligent compromises among the indices of transportation time, maximal swing angle, and so on. Both simulation and experimental results are provided to demonstrate the performance of the proposed direct swing constraint-based trajectory planning method.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 11\",\"pages\":\"Pages 2414-2419\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60397-9\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914603979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914603979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种基于摆动约束的非线性桥式起重机轨迹规划方法。为了提高运输过程的效率和安全性,设计了一些理想的轨道,以实现以下优点:1)使电车足够快地到达目的地;2)保持有效载荷摆动在可接受的范围内;3)消除小车停在所需位置时的残余摆动。具体来说,轨迹分为三个阶段。对于每一阶段,直接根据防摆和零残余摆的要求构造出期望的摆角曲线,在此基础上,通过对起重机系统的非线性运动学分析,得到小车轨迹。引入了一种优化机制,在运输时间、最大摆动角度等指标之间进行智能折衷。仿真和实验结果验证了基于直接摆振约束的弹道规划方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Direct Swing Constraint-based Trajectory Planning Method for Underactuated Overhead Cranes

This paper proposes a novel swing constraint-based trajectory planning method for nonlinear overhead crane systems. To enhance the efficiency and security of the transportation process, some desired trajectories are designed to achieve the following merits: 1) leading the trolley to reach the destination sufficiently fast; 2) keeping the payload swing in an acceptable domain; 3) eliminating the residue swing when the trolley stops at the desired position. Specifically, the trajectories are divided into three stages. For each stage, the desired curve of the swing angle is directly constructed in accordance with anti-swing and zero-residual swing requirements, based on which the trolley trajectory is then obtained by analyzing the nonlinear kinematics of the crane system. An optimization mechanism is introduced to make intelligent compromises among the indices of transportation time, maximal swing angle, and so on. Both simulation and experimental results are provided to demonstrate the performance of the proposed direct swing constraint-based trajectory planning method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
期刊最新文献
Endocrine therapy and urogenital outcomes among women with a breast cancer diagnosis. Robust Approximations to Joint Chance-constrained Problems A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems Forward Affine Point Set Matching Under Variational Bayesian Framework SAR Image Despeckling by Sparse Reconstruction Based on Shearlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1