基于连续时间模型的一般线性多智能体系统的采样数据一致性

Q2 Computer Science 自动化学报 Pub Date : 2014-11-01 DOI:10.1016/S1874-1029(14)60400-6
Xie-Yan ZHANG , Jing ZHANG
{"title":"基于连续时间模型的一般线性多智能体系统的采样数据一致性","authors":"Xie-Yan ZHANG ,&nbsp;Jing ZHANG","doi":"10.1016/S1874-1029(14)60400-6","DOIUrl":null,"url":null,"abstract":"<div><p>This paper discusses the sampled-data consensus problem of multi-agent systems with general linear dynamics and time-varying sampling intervals. To investigate the allowable upper bound of sampling intervals, we employ the property of discretization of sampled-data to identify the upper bound on the variable sampling intervals via a continuous-time model. Without considering the states in the sampling intervals, the decrease of Lyapunov function is guaranteed only at each sampling time. Consequently, it results in a more robust sampling interval which is obtained by verifying the feasibility of LMIs. Subsequently, provided a limited matrix variable, the control gain matrix <em>K</em> is solved by the LMI approach. Numerical simulations are provided to demonstrate the effectiveness of theoretical results.</p></div>","PeriodicalId":35798,"journal":{"name":"自动化学报","volume":"40 11","pages":"Pages 2549-2555"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60400-6","citationCount":"9","resultStr":"{\"title\":\"Sampled-data Consensus of Multi-agent Systems with General Linear Dynamics Based on a Continuous-time Model\",\"authors\":\"Xie-Yan ZHANG ,&nbsp;Jing ZHANG\",\"doi\":\"10.1016/S1874-1029(14)60400-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper discusses the sampled-data consensus problem of multi-agent systems with general linear dynamics and time-varying sampling intervals. To investigate the allowable upper bound of sampling intervals, we employ the property of discretization of sampled-data to identify the upper bound on the variable sampling intervals via a continuous-time model. Without considering the states in the sampling intervals, the decrease of Lyapunov function is guaranteed only at each sampling time. Consequently, it results in a more robust sampling interval which is obtained by verifying the feasibility of LMIs. Subsequently, provided a limited matrix variable, the control gain matrix <em>K</em> is solved by the LMI approach. Numerical simulations are provided to demonstrate the effectiveness of theoretical results.</p></div>\",\"PeriodicalId\":35798,\"journal\":{\"name\":\"自动化学报\",\"volume\":\"40 11\",\"pages\":\"Pages 2549-2555\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1874-1029(14)60400-6\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"自动化学报\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874102914604006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"自动化学报","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874102914604006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 9

摘要

讨论了具有一般线性动力学和时变采样间隔的多智能体系统的采样数据一致性问题。为了研究采样区间的允许上界,我们利用采样数据的离散性,通过一个连续时间模型来确定变量采样区间的上界。在不考虑采样区间状态的情况下,只能保证每个采样时间Lyapunov函数的减小。因此,通过验证lmi的可行性,得到了一个更鲁棒的采样区间。然后,在给定有限矩阵变量的情况下,用LMI方法求解控制增益矩阵K。数值模拟验证了理论结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sampled-data Consensus of Multi-agent Systems with General Linear Dynamics Based on a Continuous-time Model

This paper discusses the sampled-data consensus problem of multi-agent systems with general linear dynamics and time-varying sampling intervals. To investigate the allowable upper bound of sampling intervals, we employ the property of discretization of sampled-data to identify the upper bound on the variable sampling intervals via a continuous-time model. Without considering the states in the sampling intervals, the decrease of Lyapunov function is guaranteed only at each sampling time. Consequently, it results in a more robust sampling interval which is obtained by verifying the feasibility of LMIs. Subsequently, provided a limited matrix variable, the control gain matrix K is solved by the LMI approach. Numerical simulations are provided to demonstrate the effectiveness of theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自动化学报
自动化学报 Computer Science-Computer Graphics and Computer-Aided Design
CiteScore
4.80
自引率
0.00%
发文量
6655
期刊介绍: ACTA AUTOMATICA SINICA is a joint publication of Chinese Association of Automation and the Institute of Automation, the Chinese Academy of Sciences. The objective is the high quality and rapid publication of the articles, with a strong focus on new trends, original theoretical and experimental research and developments, emerging technology, and industrial standards in automation.
期刊最新文献
Endocrine therapy and urogenital outcomes among women with a breast cancer diagnosis. Robust Approximations to Joint Chance-constrained Problems A Chebyshev-Gauss Pseudospectral Method for Solving Optimal Control Problems Forward Affine Point Set Matching Under Variational Bayesian Framework SAR Image Despeckling by Sparse Reconstruction Based on Shearlets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1