Cindy Ka Y. Law, Eduardo Bolea-Fernandez, Tong Liu, Luiza Bonin, Elien Wallaert, Kim Verbeken, Bart De Gusseme, Frank Vanhaecke, Nico Boon
{"title":"单细胞icp -质谱法评价H2分压对生物源钯纳米颗粒生产的影响","authors":"Cindy Ka Y. Law, Eduardo Bolea-Fernandez, Tong Liu, Luiza Bonin, Elien Wallaert, Kim Verbeken, Bart De Gusseme, Frank Vanhaecke, Nico Boon","doi":"10.1111/1751-7915.14140","DOIUrl":null,"url":null,"abstract":"<p>The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by “bulk” ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd<sup>2+</sup> concentration, biomass and partial H<sub>2</sub> pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell<sup>−1</sup>) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 10<sup>5</sup> ± 3 × 10<sup>4</sup> cells μl<sup>−1</sup>) and H<sub>2</sub> partial pressure (180 ml H<sub>2</sub>). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 10<sup>4</sup> ± 10 × 10<sup>2</sup> cells μl<sup>−1</sup>) and H<sub>2</sub> partial pressure (10–100 ml H<sub>2</sub>). The influence of the H<sub>2</sub> partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"16 5","pages":"901-914"},"PeriodicalIF":4.8000,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14140","citationCount":"1","resultStr":"{\"title\":\"The influence of H2 partial pressure on biogenic palladium nanoparticle production assessed by single-cell ICP-mass spectrometry\",\"authors\":\"Cindy Ka Y. Law, Eduardo Bolea-Fernandez, Tong Liu, Luiza Bonin, Elien Wallaert, Kim Verbeken, Bart De Gusseme, Frank Vanhaecke, Nico Boon\",\"doi\":\"10.1111/1751-7915.14140\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by “bulk” ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd<sup>2+</sup> concentration, biomass and partial H<sub>2</sub> pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell<sup>−1</sup>) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 10<sup>5</sup> ± 3 × 10<sup>4</sup> cells μl<sup>−1</sup>) and H<sub>2</sub> partial pressure (180 ml H<sub>2</sub>). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 10<sup>4</sup> ± 10 × 10<sup>2</sup> cells μl<sup>−1</sup>) and H<sub>2</sub> partial pressure (10–100 ml H<sub>2</sub>). The influence of the H<sub>2</sub> partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.</p>\",\"PeriodicalId\":49145,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"16 5\",\"pages\":\"901-914\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2022-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.14140\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14140\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.14140","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
The influence of H2 partial pressure on biogenic palladium nanoparticle production assessed by single-cell ICP-mass spectrometry
The production of biogenic palladium nanoparticles (bio-Pd NPs) is widely studied due to their high catalytic activity, which depends on the size of nanoparticles (NPs). Smaller NPs (here defined as <100 nm) are more efficient due to their higher surface/volume ratio. In this work, inductively coupled plasma-mass spectrometry (ICP-MS), flow cytometry (FCM) and transmission electron microscopy (TEM) were combined to obtain insight into the formation of these bio-Pd NPs. The precipitation of bio-Pd NPs was evaluated on a cell-per-cell basis using single-cell ICP-MS (SC-ICP-MS) combined with TEM images to assess how homogenously the particles were distributed over the cells. The results provided by SC-ICP-MS were consistent with those provided by “bulk” ICP-MS analysis and FCM. It was observed that heterogeneity in the distribution of palladium over an entire cell population is strongly dependent on the Pd2+ concentration, biomass and partial H2 pressure. The latter three parameters affected the particle size, ranging from 15.6 to 560 nm, and exerted a significant impact on the production of the bio-Pd NPs. The TEM combined with SC-ICP-MS revealed that the mass distribution for bacteria with high Pd content (144 fg Pd cell−1) indicated the presence of a large number of very small NPs (D50 = 15.6 nm). These results were obtained at high cell density (1 × 105 ± 3 × 104 cells μl−1) and H2 partial pressure (180 ml H2). In contrast, very large particles (D50 = 560 nm) were observed at low cell density (3 × 104 ± 10 × 102 cells μl−1) and H2 partial pressure (10–100 ml H2). The influence of the H2 partial pressure on the nanoparticle size and the possibility of size-tuned nanoparticles are presented.
期刊介绍:
Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes