{"title":"CAD应该用什么形状语法:14例形状嵌入","authors":"T. Hong, A. Economou","doi":"10.1017/S0890060421000263","DOIUrl":null,"url":null,"abstract":"Abstract Shape queries based on shape embedding under a given Euclidean, affine, or linear transformation are absent from current CAD systems. The only systems that have attempted to implement shape embedding are the shape grammar interpreters albeit with promising but inconclusive results. The work here identifies all possible 14 cases of shape embedding with respect to the number of available registration points, four for determinate cases and ten for indeterminate ones, and an approach is sketched to take on the complexities underlying the indeterminate cases. All visual calculations are done with shapes consisting of straight lines in the Euclidean plane within the algebra Uij for i = 1 the dimension of lines and j = 2 the dimension of space in which the lines are defined, transformed and combined. Aspects of interface design and integration to current work design workflows are deliberately left aside.","PeriodicalId":50951,"journal":{"name":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","volume":"36 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"What shape grammars do that CAD should: the 14 cases of shape embedding\",\"authors\":\"T. Hong, A. Economou\",\"doi\":\"10.1017/S0890060421000263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Shape queries based on shape embedding under a given Euclidean, affine, or linear transformation are absent from current CAD systems. The only systems that have attempted to implement shape embedding are the shape grammar interpreters albeit with promising but inconclusive results. The work here identifies all possible 14 cases of shape embedding with respect to the number of available registration points, four for determinate cases and ten for indeterminate ones, and an approach is sketched to take on the complexities underlying the indeterminate cases. All visual calculations are done with shapes consisting of straight lines in the Euclidean plane within the algebra Uij for i = 1 the dimension of lines and j = 2 the dimension of space in which the lines are defined, transformed and combined. Aspects of interface design and integration to current work design workflows are deliberately left aside.\",\"PeriodicalId\":50951,\"journal\":{\"name\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/S0890060421000263\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Edam-Artificial Intelligence for Engineering Design Analysis and Manufacturing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/S0890060421000263","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
What shape grammars do that CAD should: the 14 cases of shape embedding
Abstract Shape queries based on shape embedding under a given Euclidean, affine, or linear transformation are absent from current CAD systems. The only systems that have attempted to implement shape embedding are the shape grammar interpreters albeit with promising but inconclusive results. The work here identifies all possible 14 cases of shape embedding with respect to the number of available registration points, four for determinate cases and ten for indeterminate ones, and an approach is sketched to take on the complexities underlying the indeterminate cases. All visual calculations are done with shapes consisting of straight lines in the Euclidean plane within the algebra Uij for i = 1 the dimension of lines and j = 2 the dimension of space in which the lines are defined, transformed and combined. Aspects of interface design and integration to current work design workflows are deliberately left aside.
期刊介绍:
The journal publishes original articles about significant AI theory and applications based on the most up-to-date research in all branches and phases of engineering. Suitable topics include: analysis and evaluation; selection; configuration and design; manufacturing and assembly; and concurrent engineering. Specifically, the journal is interested in the use of AI in planning, design, analysis, simulation, qualitative reasoning, spatial reasoning and graphics, manufacturing, assembly, process planning, scheduling, numerical analysis, optimization, distributed systems, multi-agent applications, cooperation, cognitive modeling, learning and creativity. AI EDAM is also interested in original, major applications of state-of-the-art knowledge-based techniques to important engineering problems.