{"title":"Flory-Huggins相互作用参数和不同节段体积分数对液晶硬-硬二嵌段和硬-软-硬三嵌段共聚物性质和分子自组装的影响","authors":"Athmen Zenati, Ashish Pokhrel","doi":"10.1002/pol.20230075","DOIUrl":null,"url":null,"abstract":"<p>Two series of hybrid liquid crystalline (LC) diblock copolymers (DBCs) and triblock copolymers (TBCs) composed of hard and soft blocks with great control over their molecular masses, dispersities (<i>M</i><sub>w</sub><i>/M</i><sub>n</sub> <i>=</i> Đ ≤ 1.38) and compositions were prepared via reversible addition-fragmentation chain transfer polymerization in anisole solvent using new <i>p</i>-dodecylphenyl-<i>N</i>-acrylamide monomer, azobisisobutyronitrile initiator, poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate) and poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate)-block-poly<i>(n</i>-butyl methacrylate) macroinitiators. Structures and properties of BCs were characterized by proton nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimeter, optical polarizing microscope, atomic force microscope and grazing-incidence small angle X-ray scattering. Kinetic behavior indicated that block copolymerization proceeded with controlled/living characteristics. Every BCs revealed three endothermic transitions corresponding to glassy phase transition, smectic-to-nematic phase transition (<i>T</i><sub>S-N</sub>) and melting phase transition. DBC-1, DBC-2, TBC-1 and TBC-2 with high-LC volume fractions exhibited strong <i>T</i><sub>S-N</sub> contrasted to DBC-3, DBC-4, TBC-3 and TBC-4 having low-LC contents. DBC-1, DBC-2, DBC-3, TBC-1 and TBC-2 evidenced smectic C structure while TBC-3 containing low-LC segment (39 wt%) showed nematic structure. Morphologies of block copolymer thin films in mixed solvent (Tetrahydrofuran/cyclohexane) vapor annealing system varied significantly, depending on the volume fractions of building blocks and the interactions between the blocks and solvents.</p>","PeriodicalId":199,"journal":{"name":"Journal of Polymer Science Part A: Polymer Chemistry","volume":"61 15","pages":"1596-1611"},"PeriodicalIF":2.7020,"publicationDate":"2023-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Properties and molecular self-assembly of liquid crystalline hard–hard diblock and hard–soft–hard triblock copolymers influenced by Flory–Huggins interaction parameter and volume fraction of distinct segments\",\"authors\":\"Athmen Zenati, Ashish Pokhrel\",\"doi\":\"10.1002/pol.20230075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Two series of hybrid liquid crystalline (LC) diblock copolymers (DBCs) and triblock copolymers (TBCs) composed of hard and soft blocks with great control over their molecular masses, dispersities (<i>M</i><sub>w</sub><i>/M</i><sub>n</sub> <i>=</i> Đ ≤ 1.38) and compositions were prepared via reversible addition-fragmentation chain transfer polymerization in anisole solvent using new <i>p</i>-dodecylphenyl-<i>N</i>-acrylamide monomer, azobisisobutyronitrile initiator, poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate) and poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate)-block-poly<i>(n</i>-butyl methacrylate) macroinitiators. Structures and properties of BCs were characterized by proton nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimeter, optical polarizing microscope, atomic force microscope and grazing-incidence small angle X-ray scattering. Kinetic behavior indicated that block copolymerization proceeded with controlled/living characteristics. Every BCs revealed three endothermic transitions corresponding to glassy phase transition, smectic-to-nematic phase transition (<i>T</i><sub>S-N</sub>) and melting phase transition. DBC-1, DBC-2, TBC-1 and TBC-2 with high-LC volume fractions exhibited strong <i>T</i><sub>S-N</sub> contrasted to DBC-3, DBC-4, TBC-3 and TBC-4 having low-LC contents. DBC-1, DBC-2, DBC-3, TBC-1 and TBC-2 evidenced smectic C structure while TBC-3 containing low-LC segment (39 wt%) showed nematic structure. Morphologies of block copolymer thin films in mixed solvent (Tetrahydrofuran/cyclohexane) vapor annealing system varied significantly, depending on the volume fractions of building blocks and the interactions between the blocks and solvents.</p>\",\"PeriodicalId\":199,\"journal\":{\"name\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"volume\":\"61 15\",\"pages\":\"1596-1611\"},\"PeriodicalIF\":2.7020,\"publicationDate\":\"2023-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science Part A: Polymer Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science Part A: Polymer Chemistry","FirstCategoryId":"1","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20230075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Materials Science","Score":null,"Total":0}
Properties and molecular self-assembly of liquid crystalline hard–hard diblock and hard–soft–hard triblock copolymers influenced by Flory–Huggins interaction parameter and volume fraction of distinct segments
Two series of hybrid liquid crystalline (LC) diblock copolymers (DBCs) and triblock copolymers (TBCs) composed of hard and soft blocks with great control over their molecular masses, dispersities (Mw/Mn= Đ ≤ 1.38) and compositions were prepared via reversible addition-fragmentation chain transfer polymerization in anisole solvent using new p-dodecylphenyl-N-acrylamide monomer, azobisisobutyronitrile initiator, poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate) and poly(2-[2-(4-cyano-azobenzene-4-oxy)ethylene-oxy]ethyl methacrylate)-block-poly(n-butyl methacrylate) macroinitiators. Structures and properties of BCs were characterized by proton nuclear magnetic resonance, gel permeation chromatography, differential scanning calorimeter, optical polarizing microscope, atomic force microscope and grazing-incidence small angle X-ray scattering. Kinetic behavior indicated that block copolymerization proceeded with controlled/living characteristics. Every BCs revealed three endothermic transitions corresponding to glassy phase transition, smectic-to-nematic phase transition (TS-N) and melting phase transition. DBC-1, DBC-2, TBC-1 and TBC-2 with high-LC volume fractions exhibited strong TS-N contrasted to DBC-3, DBC-4, TBC-3 and TBC-4 having low-LC contents. DBC-1, DBC-2, DBC-3, TBC-1 and TBC-2 evidenced smectic C structure while TBC-3 containing low-LC segment (39 wt%) showed nematic structure. Morphologies of block copolymer thin films in mixed solvent (Tetrahydrofuran/cyclohexane) vapor annealing system varied significantly, depending on the volume fractions of building blocks and the interactions between the blocks and solvents.
期刊介绍:
Part A: Polymer Chemistry is devoted to studies in fundamental organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic, bioorganic, bioinorganic and biological chemistry of monomers, polymers, oligomers and model compounds, inorganic and organometallic chemistry for catalysts, mechanistic studies, supramolecular chemistry aspects relevant to polymer...