揭示锂电池气体产生更安全的实际应用

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2022-09-22 DOI:10.1002/adfm.202208586
Pei Liu, Luyi Yang, Biwei Xiao, Hongbin Wang, Liewu Li, Shenghua Ye, Yongliang Li, Xiangzhong Ren, Xiaoping Ouyang, Jiangtao Hu, Feng Pan, Qianling Zhang, Jianhong Liu
{"title":"揭示锂电池气体产生更安全的实际应用","authors":"Pei Liu,&nbsp;Luyi Yang,&nbsp;Biwei Xiao,&nbsp;Hongbin Wang,&nbsp;Liewu Li,&nbsp;Shenghua Ye,&nbsp;Yongliang Li,&nbsp;Xiangzhong Ren,&nbsp;Xiaoping Ouyang,&nbsp;Jiangtao Hu,&nbsp;Feng Pan,&nbsp;Qianling Zhang,&nbsp;Jianhong Liu","doi":"10.1002/adfm.202208586","DOIUrl":null,"url":null,"abstract":"<p>Gases generated from lithium batteries are detrimental to their electrochemical performances, especially under the unguarded runaway conditions, which tend to contribute the sudden gases accumulation (including flammable gases), resulting in safety issues such as explosion and combustion. The comprehensive understanding of battery gas evolution mechanism under different conditions is extremely important, which is conducive to realizing a visual cognition about the complex reaction processes between electrodes and electrolytes, and providing effective strategies to optimize battery performances. This review aims to summarize the recent progress about battery gas evolution mechanism and highlight the gas suppression strategies to improve battery safety. New approaches toward future gas evolution analysis and suppression are also proposed. It is anticipated that this review will inspire further developments of lithium batteries on performance, gas suppression, and safety, especially in high energy density systems.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2022-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Revealing Lithium Battery Gas Generation for Safer Practical Applications\",\"authors\":\"Pei Liu,&nbsp;Luyi Yang,&nbsp;Biwei Xiao,&nbsp;Hongbin Wang,&nbsp;Liewu Li,&nbsp;Shenghua Ye,&nbsp;Yongliang Li,&nbsp;Xiangzhong Ren,&nbsp;Xiaoping Ouyang,&nbsp;Jiangtao Hu,&nbsp;Feng Pan,&nbsp;Qianling Zhang,&nbsp;Jianhong Liu\",\"doi\":\"10.1002/adfm.202208586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Gases generated from lithium batteries are detrimental to their electrochemical performances, especially under the unguarded runaway conditions, which tend to contribute the sudden gases accumulation (including flammable gases), resulting in safety issues such as explosion and combustion. The comprehensive understanding of battery gas evolution mechanism under different conditions is extremely important, which is conducive to realizing a visual cognition about the complex reaction processes between electrodes and electrolytes, and providing effective strategies to optimize battery performances. This review aims to summarize the recent progress about battery gas evolution mechanism and highlight the gas suppression strategies to improve battery safety. New approaches toward future gas evolution analysis and suppression are also proposed. It is anticipated that this review will inspire further developments of lithium batteries on performance, gas suppression, and safety, especially in high energy density systems.</p>\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2022-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202208586\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202208586","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 14

摘要

锂电池产生的气体对其电化学性能不利,特别是在无人保护的失控条件下,容易导致气体(包括可燃气体)的突然积聚,导致爆炸和燃烧等安全问题。全面了解不同条件下电池气体演化机理极为重要,有利于实现对电极与电解质复杂反应过程的视觉认知,为优化电池性能提供有效策略。本文综述了近年来电池气体演化机制的研究进展,重点介绍了提高电池安全性的气体抑制策略。并提出了未来气体演化分析和抑制的新方法。预计这一综述将激发锂电池在性能、气体抑制和安全性方面的进一步发展,特别是在高能量密度系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Revealing Lithium Battery Gas Generation for Safer Practical Applications

Gases generated from lithium batteries are detrimental to their electrochemical performances, especially under the unguarded runaway conditions, which tend to contribute the sudden gases accumulation (including flammable gases), resulting in safety issues such as explosion and combustion. The comprehensive understanding of battery gas evolution mechanism under different conditions is extremely important, which is conducive to realizing a visual cognition about the complex reaction processes between electrodes and electrolytes, and providing effective strategies to optimize battery performances. This review aims to summarize the recent progress about battery gas evolution mechanism and highlight the gas suppression strategies to improve battery safety. New approaches toward future gas evolution analysis and suppression are also proposed. It is anticipated that this review will inspire further developments of lithium batteries on performance, gas suppression, and safety, especially in high energy density systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Masthead: (Adv. Funct. Mater. 43/2024) Fabrication of Robust Forward Osmosis Membrane by Assembling FeOxCly Nanoparticles Biomimetic Mineralized Organic–Inorganic Hybrid Scaffolds From Microfluidic 3D Printing for Bone Repair Modulating NFO@N-MWCNTs/CC Interfaces to Construct Multilevel Synergistic Sites (Ni/Fe-O-N-C) for Multi-Heavy Metal Ions Sensing MOF-Based Electromagnetic Shields Multiscale Design: Nanoscale Chemistry, Microscale Assembly, and Macroscale Manufacturing (Adv. Funct. Mater. 43/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1