Jiali Liang, M. Ernoult, X. Doligez, S. David, N. Thiollière
{"title":"PWRs和SFRs中钚多重回收方案之间中断的影响","authors":"Jiali Liang, M. Ernoult, X. Doligez, S. David, N. Thiollière","doi":"10.1051/epjn/2021018","DOIUrl":null,"url":null,"abstract":"During the recent ten years, the estimation of future uranium demands has changed greatly, and SFR competitiveness is called again into question. In this context, a planning of plutonium multi-recycling in PWRs for the near-term decades has been announced in France, which replaces the objective of future SFR deployment. However, the mid-term policy concerning the future reactor system is always uncertain, and the demand of SFR deployment may re-increase significantly. This study looks into this possibility and analyzes the consequences of such back and forth between different plutonium multi-recycling strategies. The newly developed methodology of robustness assessment is applied to the problem, considering the objective disruptions to take into account the deep uncertainties about nuclear future. Two prior trajectories of plutonium multi-recycling, one involving the use of MIX fuel in PWRs and the other considering the SFR deployment, are analyzed first. The disruption of the strategy using MIX is then supposed under the re-consideration of future SFR deployment. To quantify the impacts of using MIX on deployment timing, we investigate the earliest time for which the fleet substitution with SFRs can be completed. To supplement, the prior strategy of SFR deployment is also disrupted under the context of halting the start of new SFR. The plutonium multi-recycling in PWRs, regarded as adaptive strategy, aims to minimize the idle plutonium. In these robustness assessments, numerous outputs of interests are analyzed, in order to provide a comprehensive evaluation of consequences of prior strategies, regarding the uncertain disruptions and optimal readjustments.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of disruption between options of plutonium multi-recycling in PWRs and in SFRs\",\"authors\":\"Jiali Liang, M. Ernoult, X. Doligez, S. David, N. Thiollière\",\"doi\":\"10.1051/epjn/2021018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During the recent ten years, the estimation of future uranium demands has changed greatly, and SFR competitiveness is called again into question. In this context, a planning of plutonium multi-recycling in PWRs for the near-term decades has been announced in France, which replaces the objective of future SFR deployment. However, the mid-term policy concerning the future reactor system is always uncertain, and the demand of SFR deployment may re-increase significantly. This study looks into this possibility and analyzes the consequences of such back and forth between different plutonium multi-recycling strategies. The newly developed methodology of robustness assessment is applied to the problem, considering the objective disruptions to take into account the deep uncertainties about nuclear future. Two prior trajectories of plutonium multi-recycling, one involving the use of MIX fuel in PWRs and the other considering the SFR deployment, are analyzed first. The disruption of the strategy using MIX is then supposed under the re-consideration of future SFR deployment. To quantify the impacts of using MIX on deployment timing, we investigate the earliest time for which the fleet substitution with SFRs can be completed. To supplement, the prior strategy of SFR deployment is also disrupted under the context of halting the start of new SFR. The plutonium multi-recycling in PWRs, regarded as adaptive strategy, aims to minimize the idle plutonium. In these robustness assessments, numerous outputs of interests are analyzed, in order to provide a comprehensive evaluation of consequences of prior strategies, regarding the uncertain disruptions and optimal readjustments.\",\"PeriodicalId\":44454,\"journal\":{\"name\":\"EPJ Nuclear Sciences & Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Nuclear Sciences & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjn/2021018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2021018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Impact of disruption between options of plutonium multi-recycling in PWRs and in SFRs
During the recent ten years, the estimation of future uranium demands has changed greatly, and SFR competitiveness is called again into question. In this context, a planning of plutonium multi-recycling in PWRs for the near-term decades has been announced in France, which replaces the objective of future SFR deployment. However, the mid-term policy concerning the future reactor system is always uncertain, and the demand of SFR deployment may re-increase significantly. This study looks into this possibility and analyzes the consequences of such back and forth between different plutonium multi-recycling strategies. The newly developed methodology of robustness assessment is applied to the problem, considering the objective disruptions to take into account the deep uncertainties about nuclear future. Two prior trajectories of plutonium multi-recycling, one involving the use of MIX fuel in PWRs and the other considering the SFR deployment, are analyzed first. The disruption of the strategy using MIX is then supposed under the re-consideration of future SFR deployment. To quantify the impacts of using MIX on deployment timing, we investigate the earliest time for which the fleet substitution with SFRs can be completed. To supplement, the prior strategy of SFR deployment is also disrupted under the context of halting the start of new SFR. The plutonium multi-recycling in PWRs, regarded as adaptive strategy, aims to minimize the idle plutonium. In these robustness assessments, numerous outputs of interests are analyzed, in order to provide a comprehensive evaluation of consequences of prior strategies, regarding the uncertain disruptions and optimal readjustments.