微系统中放射性核素的分析:溶剂萃取法选择性回收55Fe的应用

IF 0.9 Q3 NUCLEAR SCIENCE & TECHNOLOGY EPJ Nuclear Sciences & Technologies Pub Date : 2020-01-01 DOI:10.1051/epjn/2020002
S. Rassou, C. Mariet, T. Vercouter
{"title":"微系统中放射性核素的分析:溶剂萃取法选择性回收55Fe的应用","authors":"S. Rassou, C. Mariet, T. Vercouter","doi":"10.1051/epjn/2020002","DOIUrl":null,"url":null,"abstract":"The minimization of the sample quantities required by analytical laboratories, as well as the increase of the fastness of the analytical operations are emerging axes for improved radiochemical analyses related to D&D issues. Two microsystem-based protocols were developed for the selective recovery of 55Fe from radioactive samples by solvent extraction. Both protocols were tested on iron solutions in two different microchips. The yields of Fe extraction were compared with macroscale batch experiments. Better performances with more than 80% of iron extracted were obtained with the second protocol, which is based on a reactive transfer of the iron cation, and more suited to the use of microchannels and very low contact times. This study already demonstrate the high potential of microfluidic technology to improve analytical operations on D&D samples. This method will further be validated with radioactive samples.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1051/epjn/2020002","citationCount":"2","resultStr":"{\"title\":\"Analysis of radionuclides in microsystem: application to the selective recovery of 55Fe by solvent extraction\",\"authors\":\"S. Rassou, C. Mariet, T. Vercouter\",\"doi\":\"10.1051/epjn/2020002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The minimization of the sample quantities required by analytical laboratories, as well as the increase of the fastness of the analytical operations are emerging axes for improved radiochemical analyses related to D&D issues. Two microsystem-based protocols were developed for the selective recovery of 55Fe from radioactive samples by solvent extraction. Both protocols were tested on iron solutions in two different microchips. The yields of Fe extraction were compared with macroscale batch experiments. Better performances with more than 80% of iron extracted were obtained with the second protocol, which is based on a reactive transfer of the iron cation, and more suited to the use of microchannels and very low contact times. This study already demonstrate the high potential of microfluidic technology to improve analytical operations on D&D samples. This method will further be validated with radioactive samples.\",\"PeriodicalId\":44454,\"journal\":{\"name\":\"EPJ Nuclear Sciences & Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1051/epjn/2020002\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Nuclear Sciences & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjn/2020002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2020002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 2

摘要

分析实验室所需样品数量的最小化以及分析操作的牢度的增加是改进与D&D问题相关的放射化学分析的新方向。建立了两种基于微系统的溶剂萃取法从放射性样品中选择性回收55Fe的方法。两种方案都在两种不同的微芯片上对铁溶液进行了测试。并与大规模间歇实验进行了比较。第二种方案基于铁阳离子的反应转移,获得了更好的性能,铁提取率超过80%,更适合使用微通道和极低的接触时间。这项研究已经证明了微流控技术在改进D&D样品分析操作方面的巨大潜力。该方法将进一步用放射性样品进行验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of radionuclides in microsystem: application to the selective recovery of 55Fe by solvent extraction
The minimization of the sample quantities required by analytical laboratories, as well as the increase of the fastness of the analytical operations are emerging axes for improved radiochemical analyses related to D&D issues. Two microsystem-based protocols were developed for the selective recovery of 55Fe from radioactive samples by solvent extraction. Both protocols were tested on iron solutions in two different microchips. The yields of Fe extraction were compared with macroscale batch experiments. Better performances with more than 80% of iron extracted were obtained with the second protocol, which is based on a reactive transfer of the iron cation, and more suited to the use of microchannels and very low contact times. This study already demonstrate the high potential of microfluidic technology to improve analytical operations on D&D samples. This method will further be validated with radioactive samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Nuclear Sciences & Technologies
EPJ Nuclear Sciences & Technologies NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
1.00
自引率
20.00%
发文量
18
审稿时长
10 weeks
期刊最新文献
Technical note: stable and unstable reactors Templates of expected measurement uncertainties for neutron-induced capture and charged-particle production cross section observables Templates of expected measurement uncertainties for (n, xn) cross sections Templates of expected measurement uncertainties for total neutron cross-section observables Templates of expected measurement uncertainties for prompt fission neutron spectra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1