零功率反应堆CROCUS的延迟伽马分数测定

IF 0.9 Q3 NUCLEAR SCIENCE & TECHNOLOGY EPJ Nuclear Sciences & Technologies Pub Date : 2021-01-01 DOI:10.1051/epjn/2021015
O. Pakari, T. Mager, V. Lamirand, P. Frajtag, A. Pautz
{"title":"零功率反应堆CROCUS的延迟伽马分数测定","authors":"O. Pakari, T. Mager, V. Lamirand, P. Frajtag, A. Pautz","doi":"10.1051/epjn/2021015","DOIUrl":null,"url":null,"abstract":"Gamma rays are an inextricable part of a nuclear reactor’s radiation field, and as such require characterization for dose rate estimations required for the radiation protection of personnel, material choices, and the design of nuclear facilities. Most commonplace radiation transport codes used for shielding calculations only included the prompt neutron induced component of the emitted gamma rays. The relative amount of gamma rays that are emitted from delayed processes – the delayed gamma fraction – amount to a significant contribution, e.g. in a typical zero power reactor at steady state is estimated to be roughly a third. Accurate predictions of gamma fields thus require an estimation of the delayed content in order to meaningfully contribute. As a consequence, recent code developments also include delayed gamma sources and require validation data. The CROCUS zero power research reactor at EPFL is part of the NEA IRPhE and has therefore been characterized for benchmark quality experiments. In order to provide the means for delayed gamma validation, a dedicated experimental campaign was conducted in the CROCUS reactor using its newly developed gamma detection capabilities based on scintillators. In this paper we present the experimental determination of the delayed gamma fraction in CROCUS using in-core neutron and gamma detectors in a benchmark reactor configuration. A consistent and flexibly applicable methodology on how to estimate the delayed gamma fraction in zero power reactors has hitherto not existed – we herein present a general experimental setup and analysis technique that can be applied to other facilities. We found that the build-up time of relevant short lived delayed gamma emitters is likely attributed to the activation of the aluminium cladding of the fuel. Using a CeBr3 scintillator in the control rod position of the CROCUS core, we determined a delayed gamma fraction of (30.6±0.6)%.","PeriodicalId":44454,"journal":{"name":"EPJ Nuclear Sciences & Technologies","volume":"1 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Delayed gamma fraction determination in the zero power reactor CROCUS\",\"authors\":\"O. Pakari, T. Mager, V. Lamirand, P. Frajtag, A. Pautz\",\"doi\":\"10.1051/epjn/2021015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gamma rays are an inextricable part of a nuclear reactor’s radiation field, and as such require characterization for dose rate estimations required for the radiation protection of personnel, material choices, and the design of nuclear facilities. Most commonplace radiation transport codes used for shielding calculations only included the prompt neutron induced component of the emitted gamma rays. The relative amount of gamma rays that are emitted from delayed processes – the delayed gamma fraction – amount to a significant contribution, e.g. in a typical zero power reactor at steady state is estimated to be roughly a third. Accurate predictions of gamma fields thus require an estimation of the delayed content in order to meaningfully contribute. As a consequence, recent code developments also include delayed gamma sources and require validation data. The CROCUS zero power research reactor at EPFL is part of the NEA IRPhE and has therefore been characterized for benchmark quality experiments. In order to provide the means for delayed gamma validation, a dedicated experimental campaign was conducted in the CROCUS reactor using its newly developed gamma detection capabilities based on scintillators. In this paper we present the experimental determination of the delayed gamma fraction in CROCUS using in-core neutron and gamma detectors in a benchmark reactor configuration. A consistent and flexibly applicable methodology on how to estimate the delayed gamma fraction in zero power reactors has hitherto not existed – we herein present a general experimental setup and analysis technique that can be applied to other facilities. We found that the build-up time of relevant short lived delayed gamma emitters is likely attributed to the activation of the aluminium cladding of the fuel. Using a CeBr3 scintillator in the control rod position of the CROCUS core, we determined a delayed gamma fraction of (30.6±0.6)%.\",\"PeriodicalId\":44454,\"journal\":{\"name\":\"EPJ Nuclear Sciences & Technologies\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Nuclear Sciences & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/epjn/2021015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Nuclear Sciences & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjn/2021015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

摘要

伽马射线是核反应堆辐射场不可分割的一部分,因此需要对人员辐射防护、材料选择和核设施设计所需的剂量率估计进行表征。用于屏蔽计算的最常见的辐射传输代码只包括发射的伽马射线的提示中子诱导成分。延迟过程发射的伽马射线的相对量——延迟的伽马分数——有很大的贡献,例如,在一个典型的稳态零功率反应堆中,估计大约占三分之一。因此,伽马场的准确预测需要对延迟内容进行估计,以便作出有意义的贡献。因此,最近的代码开发还包括延迟的伽马源,并需要验证数据。EPFL的CROCUS零功率研究堆是NEA IRPhE的一部分,因此具有基准质量实验的特点。为了提供延迟伽马验证的手段,在CROCUS反应堆中使用其新开发的基于闪烁体的伽马探测能力进行了专门的实验活动。在本文中,我们介绍了在基准反应堆配置中使用堆芯中子和伽马探测器对CROCUS中的延迟伽马分数的实验测定。关于如何估计零功率反应堆中的延迟γ分数,迄今为止还没有一种一致的、灵活适用的方法,我们在这里提出了一种通用的实验装置和分析技术,可以应用于其他设施。我们发现,相关的短寿命延迟伽玛辐射源的积累时间可能归因于燃料铝包层的活化。在CROCUS核心的控制棒位置使用CeBr3闪烁体,我们确定延迟γ分数为(30.6±0.6)%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Delayed gamma fraction determination in the zero power reactor CROCUS
Gamma rays are an inextricable part of a nuclear reactor’s radiation field, and as such require characterization for dose rate estimations required for the radiation protection of personnel, material choices, and the design of nuclear facilities. Most commonplace radiation transport codes used for shielding calculations only included the prompt neutron induced component of the emitted gamma rays. The relative amount of gamma rays that are emitted from delayed processes – the delayed gamma fraction – amount to a significant contribution, e.g. in a typical zero power reactor at steady state is estimated to be roughly a third. Accurate predictions of gamma fields thus require an estimation of the delayed content in order to meaningfully contribute. As a consequence, recent code developments also include delayed gamma sources and require validation data. The CROCUS zero power research reactor at EPFL is part of the NEA IRPhE and has therefore been characterized for benchmark quality experiments. In order to provide the means for delayed gamma validation, a dedicated experimental campaign was conducted in the CROCUS reactor using its newly developed gamma detection capabilities based on scintillators. In this paper we present the experimental determination of the delayed gamma fraction in CROCUS using in-core neutron and gamma detectors in a benchmark reactor configuration. A consistent and flexibly applicable methodology on how to estimate the delayed gamma fraction in zero power reactors has hitherto not existed – we herein present a general experimental setup and analysis technique that can be applied to other facilities. We found that the build-up time of relevant short lived delayed gamma emitters is likely attributed to the activation of the aluminium cladding of the fuel. Using a CeBr3 scintillator in the control rod position of the CROCUS core, we determined a delayed gamma fraction of (30.6±0.6)%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Nuclear Sciences & Technologies
EPJ Nuclear Sciences & Technologies NUCLEAR SCIENCE & TECHNOLOGY-
CiteScore
1.00
自引率
20.00%
发文量
18
审稿时长
10 weeks
期刊最新文献
Technical note: stable and unstable reactors Templates of expected measurement uncertainties for neutron-induced capture and charged-particle production cross section observables Templates of expected measurement uncertainties for (n, xn) cross sections Templates of expected measurement uncertainties for total neutron cross-section observables Templates of expected measurement uncertainties for prompt fission neutron spectra
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1