{"title":"基于灰色关联分析的两级热叶栅涡管多属性决策参数优化","authors":"R. Madhu Kumar, N. Sudheer, K. Babu","doi":"10.1051/smdo/2020015","DOIUrl":null,"url":null,"abstract":"By setting two vortex tubes in hot cascade type Vortex tube manner, can achieve two cooling points for spot cooling applications with the single input. These cooling points play a vital role to cool tools in machining operations. The present work aims to optimize the output parameters such as outlet temperature, Coefficient of Performance (COP). Based on the literature, the performance of this vortex tube mainly depends on its input parameters such as air inlet pressure, length to diameter ratio, and the number of nozzles. In the present work, the above input parameters have been experimented on this vortex tube, based on the Taguchi L18 array. The optimal condition for both temperatures, COP at hot and cold outlets was calculated using grey relational analysis (GRA). The obtained experimental results were analyzed using the ANOVA approach. Also for multi responses, 1st and 2nd order predicted mathematical models developed by using Minitab 18 software and its accuracy checked. The achieved results are at first spot cooling point temperature 294.9 K, COPc1 as 0.0203, second spot cooling point temperature 284.2 K, and COPc2 as 0.1628. This work proved that for solving multi-attribute decision-making problems, grey relational analysis methodology was efficient.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-attribute decision making parametric optimization in two-stage hot cascade vortex tube through grey relational analysis\",\"authors\":\"R. Madhu Kumar, N. Sudheer, K. Babu\",\"doi\":\"10.1051/smdo/2020015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By setting two vortex tubes in hot cascade type Vortex tube manner, can achieve two cooling points for spot cooling applications with the single input. These cooling points play a vital role to cool tools in machining operations. The present work aims to optimize the output parameters such as outlet temperature, Coefficient of Performance (COP). Based on the literature, the performance of this vortex tube mainly depends on its input parameters such as air inlet pressure, length to diameter ratio, and the number of nozzles. In the present work, the above input parameters have been experimented on this vortex tube, based on the Taguchi L18 array. The optimal condition for both temperatures, COP at hot and cold outlets was calculated using grey relational analysis (GRA). The obtained experimental results were analyzed using the ANOVA approach. Also for multi responses, 1st and 2nd order predicted mathematical models developed by using Minitab 18 software and its accuracy checked. The achieved results are at first spot cooling point temperature 294.9 K, COPc1 as 0.0203, second spot cooling point temperature 284.2 K, and COPc2 as 0.1628. This work proved that for solving multi-attribute decision-making problems, grey relational analysis methodology was efficient.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2020015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2020015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Multi-attribute decision making parametric optimization in two-stage hot cascade vortex tube through grey relational analysis
By setting two vortex tubes in hot cascade type Vortex tube manner, can achieve two cooling points for spot cooling applications with the single input. These cooling points play a vital role to cool tools in machining operations. The present work aims to optimize the output parameters such as outlet temperature, Coefficient of Performance (COP). Based on the literature, the performance of this vortex tube mainly depends on its input parameters such as air inlet pressure, length to diameter ratio, and the number of nozzles. In the present work, the above input parameters have been experimented on this vortex tube, based on the Taguchi L18 array. The optimal condition for both temperatures, COP at hot and cold outlets was calculated using grey relational analysis (GRA). The obtained experimental results were analyzed using the ANOVA approach. Also for multi responses, 1st and 2nd order predicted mathematical models developed by using Minitab 18 software and its accuracy checked. The achieved results are at first spot cooling point temperature 294.9 K, COPc1 as 0.0203, second spot cooling point temperature 284.2 K, and COPc2 as 0.1628. This work proved that for solving multi-attribute decision-making problems, grey relational analysis methodology was efficient.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).