S. Aly, Hend Abdelaaty, Osama Muneer Dawood, H. Hussein
{"title":"用图论方法优化级进模冲压作业的带材布置:一个案例研究","authors":"S. Aly, Hend Abdelaaty, Osama Muneer Dawood, H. Hussein","doi":"10.1051/SMDO/2021004","DOIUrl":null,"url":null,"abstract":"The design of the progressive die stamping process is optimized through minimizing the number of die stamping stations in the strip layout to reduce the die cost. In order to accomplish such end, in this study, a graph-theoretic based method is implemented to model and optimize the strip layout design. This method starts with mapping stamping features into stamping operations. This step is followed by constructing two graphs to model the precedence and adjacency constraints among stamping operations based on a set of manufacturing rules. These two graphs are called: operation precedence graph and operation adjacency graph. In the next step, a topological sorting algorithm clusters the operations into partially ordered sets. Then, a graph coloring algorithm clusters the partially ordered operations sets into final sequence of operations. The graph-theoretic technique has been implemented on a part currently manufactured by laser cutting process technology in some Egyptian factory in Cairo. This study indicated that the graph-theoretic technique offers several advantages including the ease of programming and transparency in understanding the obtained strip layout design. This is besides being a systematic and logically approach to obtain an optimized strip layout design. In general, the progressive die manufacturing can increase productivity of sheet metal works in Egypt, only in situations of mass production. The limitation is that it requires considerable skill level and training for labor to conduct die strip layout design.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of strip-layout using graph-theoretic methodology for stamping operations on progressive die: a case study\",\"authors\":\"S. Aly, Hend Abdelaaty, Osama Muneer Dawood, H. Hussein\",\"doi\":\"10.1051/SMDO/2021004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design of the progressive die stamping process is optimized through minimizing the number of die stamping stations in the strip layout to reduce the die cost. In order to accomplish such end, in this study, a graph-theoretic based method is implemented to model and optimize the strip layout design. This method starts with mapping stamping features into stamping operations. This step is followed by constructing two graphs to model the precedence and adjacency constraints among stamping operations based on a set of manufacturing rules. These two graphs are called: operation precedence graph and operation adjacency graph. In the next step, a topological sorting algorithm clusters the operations into partially ordered sets. Then, a graph coloring algorithm clusters the partially ordered operations sets into final sequence of operations. The graph-theoretic technique has been implemented on a part currently manufactured by laser cutting process technology in some Egyptian factory in Cairo. This study indicated that the graph-theoretic technique offers several advantages including the ease of programming and transparency in understanding the obtained strip layout design. This is besides being a systematic and logically approach to obtain an optimized strip layout design. In general, the progressive die manufacturing can increase productivity of sheet metal works in Egypt, only in situations of mass production. The limitation is that it requires considerable skill level and training for labor to conduct die strip layout design.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/SMDO/2021004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/SMDO/2021004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Optimization of strip-layout using graph-theoretic methodology for stamping operations on progressive die: a case study
The design of the progressive die stamping process is optimized through minimizing the number of die stamping stations in the strip layout to reduce the die cost. In order to accomplish such end, in this study, a graph-theoretic based method is implemented to model and optimize the strip layout design. This method starts with mapping stamping features into stamping operations. This step is followed by constructing two graphs to model the precedence and adjacency constraints among stamping operations based on a set of manufacturing rules. These two graphs are called: operation precedence graph and operation adjacency graph. In the next step, a topological sorting algorithm clusters the operations into partially ordered sets. Then, a graph coloring algorithm clusters the partially ordered operations sets into final sequence of operations. The graph-theoretic technique has been implemented on a part currently manufactured by laser cutting process technology in some Egyptian factory in Cairo. This study indicated that the graph-theoretic technique offers several advantages including the ease of programming and transparency in understanding the obtained strip layout design. This is besides being a systematic and logically approach to obtain an optimized strip layout design. In general, the progressive die manufacturing can increase productivity of sheet metal works in Egypt, only in situations of mass production. The limitation is that it requires considerable skill level and training for labor to conduct die strip layout design.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).