B. Esakki, Gayatri Marreddy, M. Ganesh, E. Elangovan
{"title":"基于A*和MEA*算法的无人机最优路径规划仿真与实验方法","authors":"B. Esakki, Gayatri Marreddy, M. Ganesh, E. Elangovan","doi":"10.1051/smdo/2021024","DOIUrl":null,"url":null,"abstract":"Over the past decades, Unmanned Aerial Vehicle (UAV) have been effectively adapted to perform disaster missions, agricultural and various societal applications. The path planning plays a crucial role in bringing autonomy to the UAVs to attain the designated tasks by avoiding collision in the obstacles prone regions. Optimal path planning of UAV is considered to be a challenging issue in real time navigation during obstacle prone environments. The present article focused on implementing a well-known A* and variant of A* namely MEA* algorithm to determine an optimal path in the varied obstacle regions for the UAV applications which is novel. Simulation is performed to investigate the performance of each algorithm with respect to comparing their execution time, total distance travelled and number of turns made to reach the source to target. Further, experimental flight trails are made to examine the performance of these algorithms using a UAV. The desired position, velocity and yaw of UAV is obtained based on the waypoints of optimal path planned data and effective navigation is performed. The simulation and experimental results are compared for confirming the effectiveness of these algorithms.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation and experimental approach for optimal path planning of UAV using A* and MEA* algorithms\",\"authors\":\"B. Esakki, Gayatri Marreddy, M. Ganesh, E. Elangovan\",\"doi\":\"10.1051/smdo/2021024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decades, Unmanned Aerial Vehicle (UAV) have been effectively adapted to perform disaster missions, agricultural and various societal applications. The path planning plays a crucial role in bringing autonomy to the UAVs to attain the designated tasks by avoiding collision in the obstacles prone regions. Optimal path planning of UAV is considered to be a challenging issue in real time navigation during obstacle prone environments. The present article focused on implementing a well-known A* and variant of A* namely MEA* algorithm to determine an optimal path in the varied obstacle regions for the UAV applications which is novel. Simulation is performed to investigate the performance of each algorithm with respect to comparing their execution time, total distance travelled and number of turns made to reach the source to target. Further, experimental flight trails are made to examine the performance of these algorithms using a UAV. The desired position, velocity and yaw of UAV is obtained based on the waypoints of optimal path planned data and effective navigation is performed. The simulation and experimental results are compared for confirming the effectiveness of these algorithms.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Simulation and experimental approach for optimal path planning of UAV using A* and MEA* algorithms
Over the past decades, Unmanned Aerial Vehicle (UAV) have been effectively adapted to perform disaster missions, agricultural and various societal applications. The path planning plays a crucial role in bringing autonomy to the UAVs to attain the designated tasks by avoiding collision in the obstacles prone regions. Optimal path planning of UAV is considered to be a challenging issue in real time navigation during obstacle prone environments. The present article focused on implementing a well-known A* and variant of A* namely MEA* algorithm to determine an optimal path in the varied obstacle regions for the UAV applications which is novel. Simulation is performed to investigate the performance of each algorithm with respect to comparing their execution time, total distance travelled and number of turns made to reach the source to target. Further, experimental flight trails are made to examine the performance of these algorithms using a UAV. The desired position, velocity and yaw of UAV is obtained based on the waypoints of optimal path planned data and effective navigation is performed. The simulation and experimental results are compared for confirming the effectiveness of these algorithms.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).