{"title":"确定影响倒角立铣削加工表面形貌的加工条件的理论方法","authors":"Tsutomu Sekine","doi":"10.1051/smdo/2021025","DOIUrl":null,"url":null,"abstract":"This study demonstrates theoretical approaches useful for practical determination of machining conditions affecting machined surface topography in filleted end milling. Tool orientation is investigated in particular. There are dominant processing parameters' optimizations from various perspectives, whereas a few comprehensive strategies have been proposed to determine machining conditions in filleted end milling. It is also practically scarce to discover the optimization strategy taking path interval determination as the theoretical fountainhead. In this study, theoretical approaches were described to determine machining conditions affecting machined surface topography in filleted end milling. After geometrical description was arranged to model multi-axis filleted end milling, multi-layer approach and the other computable parameters were proposed to obtain decent surface topography generated in filleted end milling. The analytical example focusing on tool orientation was provided with discussion. As a result, some characteristics of theoretical approaches were revealed with the visual evidences. Finally, optimal tool orientation will be arranged based on the findings.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Theoretical approaches for determining machining conditions affecting a machined surface topography in filleted end milling\",\"authors\":\"Tsutomu Sekine\",\"doi\":\"10.1051/smdo/2021025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study demonstrates theoretical approaches useful for practical determination of machining conditions affecting machined surface topography in filleted end milling. Tool orientation is investigated in particular. There are dominant processing parameters' optimizations from various perspectives, whereas a few comprehensive strategies have been proposed to determine machining conditions in filleted end milling. It is also practically scarce to discover the optimization strategy taking path interval determination as the theoretical fountainhead. In this study, theoretical approaches were described to determine machining conditions affecting machined surface topography in filleted end milling. After geometrical description was arranged to model multi-axis filleted end milling, multi-layer approach and the other computable parameters were proposed to obtain decent surface topography generated in filleted end milling. The analytical example focusing on tool orientation was provided with discussion. As a result, some characteristics of theoretical approaches were revealed with the visual evidences. Finally, optimal tool orientation will be arranged based on the findings.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Theoretical approaches for determining machining conditions affecting a machined surface topography in filleted end milling
This study demonstrates theoretical approaches useful for practical determination of machining conditions affecting machined surface topography in filleted end milling. Tool orientation is investigated in particular. There are dominant processing parameters' optimizations from various perspectives, whereas a few comprehensive strategies have been proposed to determine machining conditions in filleted end milling. It is also practically scarce to discover the optimization strategy taking path interval determination as the theoretical fountainhead. In this study, theoretical approaches were described to determine machining conditions affecting machined surface topography in filleted end milling. After geometrical description was arranged to model multi-axis filleted end milling, multi-layer approach and the other computable parameters were proposed to obtain decent surface topography generated in filleted end milling. The analytical example focusing on tool orientation was provided with discussion. As a result, some characteristics of theoretical approaches were revealed with the visual evidences. Finally, optimal tool orientation will be arranged based on the findings.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).