田口法优化铁素体ODS钢机械合金化的铣削速度和时间

Ganesan Dharmalingam, M. A. Prasad, S. Salunkhe
{"title":"田口法优化铁素体ODS钢机械合金化的铣削速度和时间","authors":"Ganesan Dharmalingam, M. A. Prasad, S. Salunkhe","doi":"10.1051/smdo/2021029","DOIUrl":null,"url":null,"abstract":"The oxide dispersion strengthened (ODS) ferritic steels are one of the most important in fuel cladding materials for 4th Generation nuclear reactors because of their excellent mechanical properties such as irradiation resistance, swelling resistance, and elevated temperature tensile/compressive strength. Mechanical alloying (MA) is one of the most promising routes for developing nanocrystalline ferritic ODS steel materials. For the production of nanocrystalline ferritic ODS steel powders, the most influencing factor is the milling speed and milling time during the mechanical alloying process. With the improper selection of milling time and speed, the final milled powders become an amorphous structure consisting of high impurity inclusions in the microstructure, and strength was also affected. In order to overcome these drawbacks, the present investigation was taken into account for the selection of appropriate mechanical milling speed and time, which was optimized through Taguchi analysis followed by the MA process. The optimized mechanical milling speed and time of milled powders were characterized through X-Ray Diffraction Analysis (XRD) and Scanning Electron Microscope (SEM).","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimization of milling speed and time in mechanical alloying of ferritic ODS steel through taguchi technique\",\"authors\":\"Ganesan Dharmalingam, M. A. Prasad, S. Salunkhe\",\"doi\":\"10.1051/smdo/2021029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The oxide dispersion strengthened (ODS) ferritic steels are one of the most important in fuel cladding materials for 4th Generation nuclear reactors because of their excellent mechanical properties such as irradiation resistance, swelling resistance, and elevated temperature tensile/compressive strength. Mechanical alloying (MA) is one of the most promising routes for developing nanocrystalline ferritic ODS steel materials. For the production of nanocrystalline ferritic ODS steel powders, the most influencing factor is the milling speed and milling time during the mechanical alloying process. With the improper selection of milling time and speed, the final milled powders become an amorphous structure consisting of high impurity inclusions in the microstructure, and strength was also affected. In order to overcome these drawbacks, the present investigation was taken into account for the selection of appropriate mechanical milling speed and time, which was optimized through Taguchi analysis followed by the MA process. The optimized mechanical milling speed and time of milled powders were characterized through X-Ray Diffraction Analysis (XRD) and Scanning Electron Microscope (SEM).\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

摘要

氧化物弥散强化铁素体钢具有优异的耐辐照、抗膨胀、高温抗拉/抗压等力学性能,是第四代核反应堆燃料包壳材料中最重要的材料之一。机械合金化是发展纳米铁素体ODS钢材料最有前途的途径之一。对于纳米晶铁素体ODS钢粉的生产,机械合金化过程中影响最大的因素是铣削速度和铣削时间。由于粉磨时间和速度选择不当,最终粉磨成微观结构中杂质含量较高的非晶态结构,强度也受到影响。为了克服这些缺点,本研究考虑了适当的机械铣削速度和时间的选择,并通过田口分析和MA工艺对其进行了优化。通过x射线衍射分析(XRD)和扫描电镜(SEM)对优化后的机械磨粉速度和磨粉时间进行了表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization of milling speed and time in mechanical alloying of ferritic ODS steel through taguchi technique
The oxide dispersion strengthened (ODS) ferritic steels are one of the most important in fuel cladding materials for 4th Generation nuclear reactors because of their excellent mechanical properties such as irradiation resistance, swelling resistance, and elevated temperature tensile/compressive strength. Mechanical alloying (MA) is one of the most promising routes for developing nanocrystalline ferritic ODS steel materials. For the production of nanocrystalline ferritic ODS steel powders, the most influencing factor is the milling speed and milling time during the mechanical alloying process. With the improper selection of milling time and speed, the final milled powders become an amorphous structure consisting of high impurity inclusions in the microstructure, and strength was also affected. In order to overcome these drawbacks, the present investigation was taken into account for the selection of appropriate mechanical milling speed and time, which was optimized through Taguchi analysis followed by the MA process. The optimized mechanical milling speed and time of milled powders were characterized through X-Ray Diffraction Analysis (XRD) and Scanning Electron Microscope (SEM).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1