Ishaan R. Kale, Mayur A. Pachpande, Swapnil P. Naikwadi, Mayur N. Narkhede
{"title":"基于社会启发队列智能算法的先进制造工艺优化","authors":"Ishaan R. Kale, Mayur A. Pachpande, Swapnil P. Naikwadi, Mayur N. Narkhede","doi":"10.1051/smdo/2021033","DOIUrl":null,"url":null,"abstract":"The demand of Advanced Machining Processes (AMP) is continuously increasing owing to the technological advancement. The problems based on AMP are complex in nature as it consisted of parameters which are interdependent. These problems also consisted of linear and nonlinear constraints. This makes the problem complex which may not be solved using traditional optimization techniques. The optimization of process parameters is indispensable to use AMP's at its aptness and to make it economical to use. This paper states the optimization of process parameters of Ultrasonic machining (USM) and Abrasive water jet machining (AWJM) processes to maximize the Material Removal Rate (MRR) using a socio inspired Cohort Intelligent (CI) algorithm. The constraints involved with these problems are handled using static penalty function approach. The solutions are compared with other contemporary techniques such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Modified Harmony Search (HS_M) and Genetic Algorithm (GA).","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization of advanced manufacturing processes using socio inspired cohort intelligence algorithm\",\"authors\":\"Ishaan R. Kale, Mayur A. Pachpande, Swapnil P. Naikwadi, Mayur N. Narkhede\",\"doi\":\"10.1051/smdo/2021033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The demand of Advanced Machining Processes (AMP) is continuously increasing owing to the technological advancement. The problems based on AMP are complex in nature as it consisted of parameters which are interdependent. These problems also consisted of linear and nonlinear constraints. This makes the problem complex which may not be solved using traditional optimization techniques. The optimization of process parameters is indispensable to use AMP's at its aptness and to make it economical to use. This paper states the optimization of process parameters of Ultrasonic machining (USM) and Abrasive water jet machining (AWJM) processes to maximize the Material Removal Rate (MRR) using a socio inspired Cohort Intelligent (CI) algorithm. The constraints involved with these problems are handled using static penalty function approach. The solutions are compared with other contemporary techniques such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Modified Harmony Search (HS_M) and Genetic Algorithm (GA).\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Optimization of advanced manufacturing processes using socio inspired cohort intelligence algorithm
The demand of Advanced Machining Processes (AMP) is continuously increasing owing to the technological advancement. The problems based on AMP are complex in nature as it consisted of parameters which are interdependent. These problems also consisted of linear and nonlinear constraints. This makes the problem complex which may not be solved using traditional optimization techniques. The optimization of process parameters is indispensable to use AMP's at its aptness and to make it economical to use. This paper states the optimization of process parameters of Ultrasonic machining (USM) and Abrasive water jet machining (AWJM) processes to maximize the Material Removal Rate (MRR) using a socio inspired Cohort Intelligent (CI) algorithm. The constraints involved with these problems are handled using static penalty function approach. The solutions are compared with other contemporary techniques such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Modified Harmony Search (HS_M) and Genetic Algorithm (GA).
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).