基于高电子迁移率晶体管(HEMT)电-热-力学模型的优化

A. Amar, B. Radi, A. El Hami
{"title":"基于高电子迁移率晶体管(HEMT)电-热-力学模型的优化","authors":"A. Amar, B. Radi, A. El Hami","doi":"10.1051/smdo/2021035","DOIUrl":null,"url":null,"abstract":"The electro-thermomechanical modeling study of the High Electron Mobility Transistor (HEMT) has been presented, all the necessary equations are detailed and coupled. This proposed modeling by the finite element method using the Comsol multiphysics software, allowed to study the multiphysics behaviour of the transistor and to observe the different degradations in the structure of the component. Then, an optimization study is necessary to avoid failures in the transistor. In this work, we have used the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) method to solve the optimization problem, but it requires a very important computing time. Therefore, we proposed the kriging assisted CMA-ES method (KA-CMA-ES), it is an integration of the kriging metamodel in the CMA-ES method, it allows us to solve the problem of optimization and overcome the constraint of calculation time. All these methods are well detailed in this paper. The coupling of the finite element model developed on Comsol Multiphysics and the KA-CMA-ES method on Matlab software, allowed to optimize the multiphysics behaviour of the transistors. We made a comparison between the results of the numerical simulations of the initial state and the optimal state of the component. It was found that the proposed KA-CMA-ES method is efficient in solving optimization problems.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Optimization based on electro-thermo-mechanical modeling of the high electron mobility transistor (HEMT)\",\"authors\":\"A. Amar, B. Radi, A. El Hami\",\"doi\":\"10.1051/smdo/2021035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The electro-thermomechanical modeling study of the High Electron Mobility Transistor (HEMT) has been presented, all the necessary equations are detailed and coupled. This proposed modeling by the finite element method using the Comsol multiphysics software, allowed to study the multiphysics behaviour of the transistor and to observe the different degradations in the structure of the component. Then, an optimization study is necessary to avoid failures in the transistor. In this work, we have used the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) method to solve the optimization problem, but it requires a very important computing time. Therefore, we proposed the kriging assisted CMA-ES method (KA-CMA-ES), it is an integration of the kriging metamodel in the CMA-ES method, it allows us to solve the problem of optimization and overcome the constraint of calculation time. All these methods are well detailed in this paper. The coupling of the finite element model developed on Comsol Multiphysics and the KA-CMA-ES method on Matlab software, allowed to optimize the multiphysics behaviour of the transistors. We made a comparison between the results of the numerical simulations of the initial state and the optimal state of the component. It was found that the proposed KA-CMA-ES method is efficient in solving optimization problems.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了高电子迁移率晶体管(HEMT)的电-热-机械模型研究,详细地推导了所需的方程并进行了耦合。采用Comsol多物理场软件的有限元建模方法,可以研究晶体管的多物理场行为,并观察元件结构的不同退化。因此,有必要进行优化研究,以避免晶体管中的故障。在本工作中,我们使用协方差矩阵自适应进化策略(CMA-ES)方法来解决优化问题,但它需要非常重要的计算时间。因此,我们提出了kriging辅助CMA-ES方法(KA-CMA-ES),它是kriging元模型在CMA-ES方法中的集成,它使我们能够解决优化问题并克服计算时间的约束。本文对这些方法进行了详细的介绍。在Comsol Multiphysics上建立的有限元模型与Matlab软件上的KA-CMA-ES方法耦合,可以优化晶体管的多物理场行为。对元件初始状态和最优状态的数值模拟结果进行了比较。结果表明,所提出的KA-CMA-ES方法在求解优化问题上是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimization based on electro-thermo-mechanical modeling of the high electron mobility transistor (HEMT)
The electro-thermomechanical modeling study of the High Electron Mobility Transistor (HEMT) has been presented, all the necessary equations are detailed and coupled. This proposed modeling by the finite element method using the Comsol multiphysics software, allowed to study the multiphysics behaviour of the transistor and to observe the different degradations in the structure of the component. Then, an optimization study is necessary to avoid failures in the transistor. In this work, we have used the Covariance Matrix Adaptation-Evolution Strategy (CMA-ES) method to solve the optimization problem, but it requires a very important computing time. Therefore, we proposed the kriging assisted CMA-ES method (KA-CMA-ES), it is an integration of the kriging metamodel in the CMA-ES method, it allows us to solve the problem of optimization and overcome the constraint of calculation time. All these methods are well detailed in this paper. The coupling of the finite element model developed on Comsol Multiphysics and the KA-CMA-ES method on Matlab software, allowed to optimize the multiphysics behaviour of the transistors. We made a comparison between the results of the numerical simulations of the initial state and the optimal state of the component. It was found that the proposed KA-CMA-ES method is efficient in solving optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.00
自引率
0.00%
发文量
19
审稿时长
16 weeks
期刊介绍: The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).
期刊最新文献
A novel approach for noise prediction using Neural network trained with an efficient optimization technique Topology optimization of engine bracket arm using BESO Integration of digital imagery for topology optimization A comparative analysis of the fuzzy and intuitionistic fuzzy environment for group and individual equipment replacement Models in order to achieve the optimized results Real-time fast learning hardware implementation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1