{"title":"基于NBI-SASP方法的机械结构问题多目标优化算法","authors":"Samira El Moumen, S. Ouhimmou","doi":"10.1051/smdo/2021037","DOIUrl":null,"url":null,"abstract":"Various engineering design problems are formulated as constrained multi-objective optimization problems. One of the relevant and popular methods that deals with these problems is the weighted method. However, the major inconvenience with its application is that it does not yield a well distributed set. In this study, the use of the Normal Boundary Intersection approach (NBI) is proposed, which is effective in obtaining an evenly distributed set of points in the Pareto set. Given an evenly distributed set of weights, it can be strictly shown that this approach is absolutely independent of the relative scales of the functions. Moreover, in order to ensure the convergence to the Global Pareto frontier, NBI approach has to be aligned with a global optimization method. Thus, the following paper suggests NBI-Simulated Annealing Simultaneous Perturbation method (NBI-SASP) as a new method for multiobjective optimization problems. The study shall test also the applicability of the NBI-SASP approach using different engineering multi-objective optimization problems and the findings shall be compared to a method of reference (NSGA). Results clearly demonstrate that the suggested method is more efficient when it comes to search ability and it provides a well distributed global Pareto Front.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New multiobjective optimization algorithm using NBI-SASP approaches for mechanical structural problems\",\"authors\":\"Samira El Moumen, S. Ouhimmou\",\"doi\":\"10.1051/smdo/2021037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Various engineering design problems are formulated as constrained multi-objective optimization problems. One of the relevant and popular methods that deals with these problems is the weighted method. However, the major inconvenience with its application is that it does not yield a well distributed set. In this study, the use of the Normal Boundary Intersection approach (NBI) is proposed, which is effective in obtaining an evenly distributed set of points in the Pareto set. Given an evenly distributed set of weights, it can be strictly shown that this approach is absolutely independent of the relative scales of the functions. Moreover, in order to ensure the convergence to the Global Pareto frontier, NBI approach has to be aligned with a global optimization method. Thus, the following paper suggests NBI-Simulated Annealing Simultaneous Perturbation method (NBI-SASP) as a new method for multiobjective optimization problems. The study shall test also the applicability of the NBI-SASP approach using different engineering multi-objective optimization problems and the findings shall be compared to a method of reference (NSGA). Results clearly demonstrate that the suggested method is more efficient when it comes to search ability and it provides a well distributed global Pareto Front.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2021037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2021037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
New multiobjective optimization algorithm using NBI-SASP approaches for mechanical structural problems
Various engineering design problems are formulated as constrained multi-objective optimization problems. One of the relevant and popular methods that deals with these problems is the weighted method. However, the major inconvenience with its application is that it does not yield a well distributed set. In this study, the use of the Normal Boundary Intersection approach (NBI) is proposed, which is effective in obtaining an evenly distributed set of points in the Pareto set. Given an evenly distributed set of weights, it can be strictly shown that this approach is absolutely independent of the relative scales of the functions. Moreover, in order to ensure the convergence to the Global Pareto frontier, NBI approach has to be aligned with a global optimization method. Thus, the following paper suggests NBI-Simulated Annealing Simultaneous Perturbation method (NBI-SASP) as a new method for multiobjective optimization problems. The study shall test also the applicability of the NBI-SASP approach using different engineering multi-objective optimization problems and the findings shall be compared to a method of reference (NSGA). Results clearly demonstrate that the suggested method is more efficient when it comes to search ability and it provides a well distributed global Pareto Front.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).