{"title":"基于BESO的发动机托架臂拓扑优化","authors":"S. Srivastava, S. Salunkhe, S. Pande","doi":"10.1051/smdo/2023003","DOIUrl":null,"url":null,"abstract":"An engine bracket is one of the most critical components of the engine used for mounting and supporting the engine in the vehicles. Today, the automobile industry requires lightweight components, which will reduce the car's overall weight when fitted into the vehicle. Topology optimization is a technique with the help of which the surface of a component is optimized to get the required shape for having reduced weight. The weight is reduced by optimizing the material on the surface of the details. In this paper, the work done is the application of topology optimization on the surface of the engine bracket arm. Then the optimized model is tested computationally using realistic conditions. Bi-directional evolutionary structural optimization is used as a technique for topology optimization. With the help of the BESO method, the material optimization is done, and then the weights are compared with the original component. A new algorithm is developed using MATLAB codes. The sensitivity ratio is considered using the von Mises strength as a critical parameter for the BESO method for optimization. The optimized bracket model is then assembled with the hub of the component, and then the assembly is simulated for verification using standard conditions. A comparison of weight reduction is there using topology optimization.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topology optimization of engine bracket arm using BESO\",\"authors\":\"S. Srivastava, S. Salunkhe, S. Pande\",\"doi\":\"10.1051/smdo/2023003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An engine bracket is one of the most critical components of the engine used for mounting and supporting the engine in the vehicles. Today, the automobile industry requires lightweight components, which will reduce the car's overall weight when fitted into the vehicle. Topology optimization is a technique with the help of which the surface of a component is optimized to get the required shape for having reduced weight. The weight is reduced by optimizing the material on the surface of the details. In this paper, the work done is the application of topology optimization on the surface of the engine bracket arm. Then the optimized model is tested computationally using realistic conditions. Bi-directional evolutionary structural optimization is used as a technique for topology optimization. With the help of the BESO method, the material optimization is done, and then the weights are compared with the original component. A new algorithm is developed using MATLAB codes. The sensitivity ratio is considered using the von Mises strength as a critical parameter for the BESO method for optimization. The optimized bracket model is then assembled with the hub of the component, and then the assembly is simulated for verification using standard conditions. A comparison of weight reduction is there using topology optimization.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2023003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Topology optimization of engine bracket arm using BESO
An engine bracket is one of the most critical components of the engine used for mounting and supporting the engine in the vehicles. Today, the automobile industry requires lightweight components, which will reduce the car's overall weight when fitted into the vehicle. Topology optimization is a technique with the help of which the surface of a component is optimized to get the required shape for having reduced weight. The weight is reduced by optimizing the material on the surface of the details. In this paper, the work done is the application of topology optimization on the surface of the engine bracket arm. Then the optimized model is tested computationally using realistic conditions. Bi-directional evolutionary structural optimization is used as a technique for topology optimization. With the help of the BESO method, the material optimization is done, and then the weights are compared with the original component. A new algorithm is developed using MATLAB codes. The sensitivity ratio is considered using the von Mises strength as a critical parameter for the BESO method for optimization. The optimized bracket model is then assembled with the hub of the component, and then the assembly is simulated for verification using standard conditions. A comparison of weight reduction is there using topology optimization.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).