{"title":"PCA-LSTM算法在金融市场股票收益预测及模型优化中的应用","authors":"Yanxiang Mi, Donghai Xu, Tielin Gao","doi":"10.1051/smdo/2023009","DOIUrl":null,"url":null,"abstract":"Accurately predicting stock returns can help reduce market risk. This paper briefly introduced the long short-term memory (LSTM) algorithm model for predicting stock returns and combined it with principal component analysis (PCA) to improve the prediction accuracy. Simulation experiments were conducted on 80 stocks, and the PCA-LSTM model was compared with back-propagation neural network (BPNN) and LSTM models. The results showed that the PCA analysis method effectively identified the principal components of variable indicators. During the training iteration convergence, the PCA-LSTM model not only converged faster but also had smaller errors after stabilization. Moreover, the PCA-LSTM model had the highest prediction accuracy, the LSTM model was the second, and the BPNN model was the worst.","PeriodicalId":37601,"journal":{"name":"International Journal for Simulation and Multidisciplinary Design Optimization","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Application of PCA-LSTM algorithm for financial market stock return prediction and optimization model\",\"authors\":\"Yanxiang Mi, Donghai Xu, Tielin Gao\",\"doi\":\"10.1051/smdo/2023009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting stock returns can help reduce market risk. This paper briefly introduced the long short-term memory (LSTM) algorithm model for predicting stock returns and combined it with principal component analysis (PCA) to improve the prediction accuracy. Simulation experiments were conducted on 80 stocks, and the PCA-LSTM model was compared with back-propagation neural network (BPNN) and LSTM models. The results showed that the PCA analysis method effectively identified the principal components of variable indicators. During the training iteration convergence, the PCA-LSTM model not only converged faster but also had smaller errors after stabilization. Moreover, the PCA-LSTM model had the highest prediction accuracy, the LSTM model was the second, and the BPNN model was the worst.\",\"PeriodicalId\":37601,\"journal\":{\"name\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Simulation and Multidisciplinary Design Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/smdo/2023009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Simulation and Multidisciplinary Design Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/smdo/2023009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Application of PCA-LSTM algorithm for financial market stock return prediction and optimization model
Accurately predicting stock returns can help reduce market risk. This paper briefly introduced the long short-term memory (LSTM) algorithm model for predicting stock returns and combined it with principal component analysis (PCA) to improve the prediction accuracy. Simulation experiments were conducted on 80 stocks, and the PCA-LSTM model was compared with back-propagation neural network (BPNN) and LSTM models. The results showed that the PCA analysis method effectively identified the principal components of variable indicators. During the training iteration convergence, the PCA-LSTM model not only converged faster but also had smaller errors after stabilization. Moreover, the PCA-LSTM model had the highest prediction accuracy, the LSTM model was the second, and the BPNN model was the worst.
期刊介绍:
The International Journal for Simulation and Multidisciplinary Design Optimization is a peer-reviewed journal covering all aspects related to the simulation and multidisciplinary design optimization. It is devoted to publish original work related to advanced design methodologies, theoretical approaches, contemporary computers and their applications to different fields such as engineering software/hardware developments, science, computing techniques, aerospace, automobile, aeronautic, business, management, manufacturing,... etc. Front-edge research topics related to topology optimization, composite material design, numerical simulation of manufacturing process, advanced optimization algorithms, industrial applications of optimization methods are highly suggested. The scope includes, but is not limited to original research contributions, reviews in the following topics: Parameter identification & Surface Response (all aspects of characterization and modeling of materials and structural behaviors, Artificial Neural Network, Parametric Programming, approximation methods,…etc.) Optimization Strategies (optimization methods that involve heuristic or Mathematics approaches, Control Theory, Linear & Nonlinear Programming, Stochastic Programming, Discrete & Dynamic Programming, Operational Research, Algorithms in Optimization based on nature behaviors,….etc.) Structural Optimization (sizing, shape and topology optimizations with or without external constraints for materials and structures) Dynamic and Vibration (cover modelling and simulation for dynamic and vibration analysis, shape and topology optimizations with or without external constraints for materials and structures) Industrial Applications (Applications Related to Optimization, Modelling for Engineering applications are very welcome. Authors should underline the technological, numerical or integration of the mentioned scopes.).