{"title":"电沉积锌镍合金非铬酸盐转化涂层处理的电化学评价","authors":"J. Wharton, G. Wilcox, K. R. Baldwin","doi":"10.1080/00202967.1999.11871272","DOIUrl":null,"url":null,"abstract":"A number of possible non-chromate conversion coating formulations have been studied to examine their efficacy as replacements for chromate-based coating treatments on electrodeposited zinc-nickel alloys. Data have been collected from both electrochemical and conventional salt fog corrosion tests. In the latter tests all the alternative non-chromate systems studied delayed the onset of the corrosion of the zinc-nickel coating itself but only the simple molybdate and the permanganate/molybdate dual treatment brought about improvements in times to red rusting of the steel substrate. The electrochemical evaluations suggested that simple molybdate-treated surfaces act as only moderate barriers to the chloride environments. Of the two dual treatments, permanganate/molybdate behaved similarly to the simple molybdate treated surfaces in the electrochemical tests, but the molybdate/permanganate was more protective, although this was not exhibited in the salt fog corrosion tests.","PeriodicalId":23268,"journal":{"name":"Transactions of The Institute of Metal Finishing","volume":"77 1","pages":"152-158"},"PeriodicalIF":1.2000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00202967.1999.11871272","citationCount":"15","resultStr":"{\"title\":\"An Electrochemical Evaluation of Possible Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys\",\"authors\":\"J. Wharton, G. Wilcox, K. R. Baldwin\",\"doi\":\"10.1080/00202967.1999.11871272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A number of possible non-chromate conversion coating formulations have been studied to examine their efficacy as replacements for chromate-based coating treatments on electrodeposited zinc-nickel alloys. Data have been collected from both electrochemical and conventional salt fog corrosion tests. In the latter tests all the alternative non-chromate systems studied delayed the onset of the corrosion of the zinc-nickel coating itself but only the simple molybdate and the permanganate/molybdate dual treatment brought about improvements in times to red rusting of the steel substrate. The electrochemical evaluations suggested that simple molybdate-treated surfaces act as only moderate barriers to the chloride environments. Of the two dual treatments, permanganate/molybdate behaved similarly to the simple molybdate treated surfaces in the electrochemical tests, but the molybdate/permanganate was more protective, although this was not exhibited in the salt fog corrosion tests.\",\"PeriodicalId\":23268,\"journal\":{\"name\":\"Transactions of The Institute of Metal Finishing\",\"volume\":\"77 1\",\"pages\":\"152-158\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00202967.1999.11871272\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Institute of Metal Finishing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00202967.1999.11871272\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Institute of Metal Finishing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00202967.1999.11871272","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
An Electrochemical Evaluation of Possible Non-Chromate Conversion Coating Treatments for Electrodeposited Zinc-Nickel Alloys
A number of possible non-chromate conversion coating formulations have been studied to examine their efficacy as replacements for chromate-based coating treatments on electrodeposited zinc-nickel alloys. Data have been collected from both electrochemical and conventional salt fog corrosion tests. In the latter tests all the alternative non-chromate systems studied delayed the onset of the corrosion of the zinc-nickel coating itself but only the simple molybdate and the permanganate/molybdate dual treatment brought about improvements in times to red rusting of the steel substrate. The electrochemical evaluations suggested that simple molybdate-treated surfaces act as only moderate barriers to the chloride environments. Of the two dual treatments, permanganate/molybdate behaved similarly to the simple molybdate treated surfaces in the electrochemical tests, but the molybdate/permanganate was more protective, although this was not exhibited in the salt fog corrosion tests.
期刊介绍:
Transactions of the Institute of Metal Finishing provides international peer-reviewed coverage of all aspects of surface finishing and surface engineering, from fundamental research to in-service applications. The coverage is principally concerned with the application of surface engineering and coating technologies to enhance the properties of engineering components and assemblies. These techniques include electroplating and electroless plating and their pre- and post-treatments, thus embracing all cleaning pickling and chemical conversion processes, and also complementary processes such as anodising. Increasingly, other processes are becoming important particularly regarding surface profile, texture, opacity, contact integrity, etc.