Ling Huang, J. Dong, Fang-Zu Yang, Shukai Xu, Sm Zhou
{"title":"Ni-W合金镀层的机理、组织和显微硬度研究","authors":"Ling Huang, J. Dong, Fang-Zu Yang, Shukai Xu, Sm Zhou","doi":"10.1080/00202967.1999.11871279","DOIUrl":null,"url":null,"abstract":"SUMMARYThe electrodeposition of Ni-W alloy has been studied on the glassy carbon electrode by the cyclic voltammetry and potentiostatic step methods. It has been found that electrodeposition of Ni-W alloy involves an intermediate valence tungsten oxide which inhibits hydrogen evolution. Ni-W alloy electrodeposition occurs by a mechanism involving progressive nucleation followed by three dimensional growth.The structures of nickel-tungsten alloy deposits were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XRD results from Ni-W alloy deposits reveal a face-centered cubic solid solution, the microstructure of the deposits exhibit (111) preferred orientation. The lattice constant and microhardness of Ni-W alloy deposit increase as the tungsten content increases, the XPS results of Ni-W alloy deposits indicate that the nickel and tungsten of the deposits exist in the metallic state, but the Ni-W alloy deposit with a tungsten content of 40.7% is an intermetallic compound. Th...","PeriodicalId":23268,"journal":{"name":"Transactions of The Institute of Metal Finishing","volume":"33 1","pages":"185-187"},"PeriodicalIF":1.2000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00202967.1999.11871279","citationCount":"16","resultStr":"{\"title\":\"Studies on the Mechanism, Structure and Microhardness of Ni-W Alloy Electrodeposits\",\"authors\":\"Ling Huang, J. Dong, Fang-Zu Yang, Shukai Xu, Sm Zhou\",\"doi\":\"10.1080/00202967.1999.11871279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARYThe electrodeposition of Ni-W alloy has been studied on the glassy carbon electrode by the cyclic voltammetry and potentiostatic step methods. It has been found that electrodeposition of Ni-W alloy involves an intermediate valence tungsten oxide which inhibits hydrogen evolution. Ni-W alloy electrodeposition occurs by a mechanism involving progressive nucleation followed by three dimensional growth.The structures of nickel-tungsten alloy deposits were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XRD results from Ni-W alloy deposits reveal a face-centered cubic solid solution, the microstructure of the deposits exhibit (111) preferred orientation. The lattice constant and microhardness of Ni-W alloy deposit increase as the tungsten content increases, the XPS results of Ni-W alloy deposits indicate that the nickel and tungsten of the deposits exist in the metallic state, but the Ni-W alloy deposit with a tungsten content of 40.7% is an intermetallic compound. Th...\",\"PeriodicalId\":23268,\"journal\":{\"name\":\"Transactions of The Institute of Metal Finishing\",\"volume\":\"33 1\",\"pages\":\"185-187\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"1999-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00202967.1999.11871279\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of The Institute of Metal Finishing\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/00202967.1999.11871279\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of The Institute of Metal Finishing","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/00202967.1999.11871279","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Studies on the Mechanism, Structure and Microhardness of Ni-W Alloy Electrodeposits
SUMMARYThe electrodeposition of Ni-W alloy has been studied on the glassy carbon electrode by the cyclic voltammetry and potentiostatic step methods. It has been found that electrodeposition of Ni-W alloy involves an intermediate valence tungsten oxide which inhibits hydrogen evolution. Ni-W alloy electrodeposition occurs by a mechanism involving progressive nucleation followed by three dimensional growth.The structures of nickel-tungsten alloy deposits were analyzed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The XRD results from Ni-W alloy deposits reveal a face-centered cubic solid solution, the microstructure of the deposits exhibit (111) preferred orientation. The lattice constant and microhardness of Ni-W alloy deposit increase as the tungsten content increases, the XPS results of Ni-W alloy deposits indicate that the nickel and tungsten of the deposits exist in the metallic state, but the Ni-W alloy deposit with a tungsten content of 40.7% is an intermetallic compound. Th...
期刊介绍:
Transactions of the Institute of Metal Finishing provides international peer-reviewed coverage of all aspects of surface finishing and surface engineering, from fundamental research to in-service applications. The coverage is principally concerned with the application of surface engineering and coating technologies to enhance the properties of engineering components and assemblies. These techniques include electroplating and electroless plating and their pre- and post-treatments, thus embracing all cleaning pickling and chemical conversion processes, and also complementary processes such as anodising. Increasingly, other processes are becoming important particularly regarding surface profile, texture, opacity, contact integrity, etc.