{"title":"等离子体基础","authors":"Yang Wang, E. W. Plummer, K. Kempa","doi":"10.1080/00018732.2011.621320","DOIUrl":null,"url":null,"abstract":"Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"60 1","pages":"799 - 898"},"PeriodicalIF":35.0000,"publicationDate":"2011-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2011.621320","citationCount":"118","resultStr":"{\"title\":\"Foundations of Plasmonics\",\"authors\":\"Yang Wang, E. W. Plummer, K. Kempa\",\"doi\":\"10.1080/00018732.2011.621320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":\"60 1\",\"pages\":\"799 - 898\"},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2011-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00018732.2011.621320\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2011.621320\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2011.621320","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
Plasma physics is a very mature field, studied extensively for well over a century. The cross-disciplinary field of plasmonics (electromagnetics of metallic nanostructures), on the other hand, with its potential for an extraordinary light control through novel class of materials and the resulting applications, has become very fashionable only recently. Inevitably, as a result of this rapid development, the deep connections with the mother discipline, the plasma physics, have sometimes been overlooked. The goal of this work is to review some of these basic connections, which are relevant, and ultimately helpful for researchers in the new field. We focus on the solid-state structured plasmas and address the issue of classical versus quantum treatments. We discuss the little known subtleties of the surface plasmons at metallic surfaces (e.g. multipole plasmons) and their consequences on plasmonics of the textured metallic films. Plasmonics of nanoparticles has been preceded by studies of plasma effects in metallic clusters and semiconducting quantum dots (QDs). In this context, we discuss the little known connection between the Mie resonance in metallic particles and the collective resonance in wide parabolic quantum wells (QWs) and QDs. Researchers dealing with plasmonics of thin films can benefit from earlier studies of plasmons in the semiconductor modulation doped heterojunctions and QWs, with its rich spectrum of intersubband and two-dimensional plasmons. In non-equilibrium plasmonic systems, generation of plasmons can be stimulated, leading to the exciting possibility of the plasmon instability. Extraordinarily complex is the plasmonics of carbon nanotubes and graphene, with its numerous van Hove, one- and three-dimensional plasmons, and we discuss how the plasmonics of metamaterials can benefit from this complexity. Finally, we discuss a few applications, which could directly benefit from plasmonics, including medical and the novel class of solar cells.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.