H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. Tóth, G. Tegze, L. Gránásy
{"title":"原子长度和扩散时间尺度上凝聚态动力学的相场晶体模型:综述","authors":"H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. Tóth, G. Tegze, L. Gránásy","doi":"10.1080/00018732.2012.737555","DOIUrl":null,"url":null,"abstract":"Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":"61 1","pages":"665 - 743"},"PeriodicalIF":35.0000,"publicationDate":"2012-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018732.2012.737555","citationCount":"268","resultStr":"{\"title\":\"Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview\",\"authors\":\"H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G. Tóth, G. Tegze, L. Gránásy\",\"doi\":\"10.1080/00018732.2012.737555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.\",\"PeriodicalId\":7373,\"journal\":{\"name\":\"Advances in Physics\",\"volume\":\"61 1\",\"pages\":\"665 - 743\"},\"PeriodicalIF\":35.0000,\"publicationDate\":\"2012-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00018732.2012.737555\",\"citationCount\":\"268\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1080/00018732.2012.737555\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/00018732.2012.737555","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 268
摘要
本文综述了相场晶体(PFC)方法的基本概念及其应用,该方法是材料科学中原子尺度和微观尺度紧密耦合问题的最新模拟方法之一。PFC方法在原子长度和扩散时间尺度上运行,因此构成了分子模拟方法的计算效率替代方案。在埃尔德等人的工作之后,它在材料科学方面的激烈发展最近才开始。Rev. Lett. 88 (2002), p. 245701]。自这些初步研究以来,动态密度泛函理论和热力学概念已与PFC方法联系起来,作为后者的进一步理论基础。在这篇综述中,我们总结了这些方法的发展步骤以及PFC方法最重要的应用,特别关注了硬物质物理和软物质物理中发展步骤的相互作用。这样做,我们希望展示当今PFC建模的最新技术,以及在不久的将来,这种方法在物理和材料科学中可能仍然存在的潜力。
Phase-field-crystal models for condensed matter dynamics on atomic length and diffusive time scales: an overview
Here, we review the basic concepts and applications of the phase-field-crystal (PFC) method, which is one of the latest simulation methodologies in materials science for problems, where atomic- and microscales are tightly coupled. The PFC method operates on atomic length and diffusive time scales, and thus constitutes a computationally efficient alternative to molecular simulation methods. Its intense development in materials science started fairly recently following the work by Elder et al. [Phys. Rev. Lett. 88 (2002), p. 245701]. Since these initial studies, dynamical density functional theory and thermodynamic concepts have been linked to the PFC approach to serve as further theoretical fundamentals for the latter. In this review, we summarize these methodological development steps as well as the most important applications of the PFC method with a special focus on the interaction of development steps taken in hard and soft matter physics, respectively. Doing so, we hope to present today's state of the art in PFC modelling as well as the potential, which might still arise from this method in physics and materials science in the nearby future.
期刊介绍:
Advances in Physics publishes authoritative critical reviews by experts on topics of interest and importance to condensed matter physicists. It is intended for motivated readers with a basic knowledge of the journal’s field and aims to draw out the salient points of a reviewed subject from the perspective of the author. The journal''s scope includes condensed matter physics and statistical mechanics: broadly defined to include the overlap with quantum information, cold atoms, soft matter physics and biophysics. Readership: Physicists, materials scientists and physical chemists in universities, industry and research institutes.