菌丝真菌对甾体激素脱氢表雄酮内源性衍生物- 7-oxo-DHEA的催化活性

IF 4.8 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Microbial Biotechnology Pub Date : 2021-07-29 DOI:10.1111/1751-7915.13903
Paulina ?yczko, Anna Panek, Ireneusz Ceremuga, Alina ?wizdor
{"title":"菌丝真菌对甾体激素脱氢表雄酮内源性衍生物- 7-oxo-DHEA的催化活性","authors":"Paulina ?yczko,&nbsp;Anna Panek,&nbsp;Ireneusz Ceremuga,&nbsp;Alina ?wizdor","doi":"10.1111/1751-7915.13903","DOIUrl":null,"url":null,"abstract":"<p>Seventeen species of fungi belonging to thirteen genera were screened for the ability to carry out the transformation of 7-oxo-DHEA (7-oxo-dehydroepiandrosterone). Some strains expressed new patterns of catalytic activity towards the substrate, namely 16β-hydroxylation (<i>Laetiporus sulphureus</i> AM498), Baeyer–Villiger oxidation of ketone in D-ring to lactone (<i>Fusicoccum amygdali</i> AM258) and esterification of the 3β-hydroxy group (<i>Spicaria divaricata</i> AM423). The majority of examined strains were able to reduce the 17-oxo group of the substrate to form 3β,17β-dihydroxy-androst-5-en-7-one. The highest activity was reached with <i>Armillaria mellea</i> AM296 and <i>Ascosphaera apis</i> AM496 for which complete conversion of the starting material was achieved, and the resulting 17β-alcohol was the sole reaction product. Two strains of tested fungi were also capable of stereospecific reduction of the conjugated 7-keto group leading to 7β-hydroxy-DHEA (<i>Inonotus radiatus</i> AM70) or a mixture of 3β,7α,17β-trihydroxy-androst-5-ene and 3β,7β,17β-trihydroxy-androst-5-ene (<i>Piptoporus betulinus</i> AM39). The structures of new metabolites were confirmed by MS and NMR analysis. They were also examined for their cholinesterase inhibitory activity in an enzymatic-based assay <i>in vitro</i> test.</p>","PeriodicalId":49145,"journal":{"name":"Microbial Biotechnology","volume":"14 5","pages":"2187-2198"},"PeriodicalIF":4.8000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1751-7915.13903","citationCount":"1","resultStr":"{\"title\":\"The catalytic activity of mycelial fungi towards 7-oxo-DHEA – an endogenous derivative of steroidal hormone dehydroepiandrosterone\",\"authors\":\"Paulina ?yczko,&nbsp;Anna Panek,&nbsp;Ireneusz Ceremuga,&nbsp;Alina ?wizdor\",\"doi\":\"10.1111/1751-7915.13903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Seventeen species of fungi belonging to thirteen genera were screened for the ability to carry out the transformation of 7-oxo-DHEA (7-oxo-dehydroepiandrosterone). Some strains expressed new patterns of catalytic activity towards the substrate, namely 16β-hydroxylation (<i>Laetiporus sulphureus</i> AM498), Baeyer–Villiger oxidation of ketone in D-ring to lactone (<i>Fusicoccum amygdali</i> AM258) and esterification of the 3β-hydroxy group (<i>Spicaria divaricata</i> AM423). The majority of examined strains were able to reduce the 17-oxo group of the substrate to form 3β,17β-dihydroxy-androst-5-en-7-one. The highest activity was reached with <i>Armillaria mellea</i> AM296 and <i>Ascosphaera apis</i> AM496 for which complete conversion of the starting material was achieved, and the resulting 17β-alcohol was the sole reaction product. Two strains of tested fungi were also capable of stereospecific reduction of the conjugated 7-keto group leading to 7β-hydroxy-DHEA (<i>Inonotus radiatus</i> AM70) or a mixture of 3β,7α,17β-trihydroxy-androst-5-ene and 3β,7β,17β-trihydroxy-androst-5-ene (<i>Piptoporus betulinus</i> AM39). The structures of new metabolites were confirmed by MS and NMR analysis. They were also examined for their cholinesterase inhibitory activity in an enzymatic-based assay <i>in vitro</i> test.</p>\",\"PeriodicalId\":49145,\"journal\":{\"name\":\"Microbial Biotechnology\",\"volume\":\"14 5\",\"pages\":\"2187-2198\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2021-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1111/1751-7915.13903\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbial Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13903\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.13903","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

筛选了13属17种真菌进行7-oxo-DHEA (7-oxo-dehydroepiandrosterone)转化的能力。一些菌株对底物表现出新的催化活性模式,即16β-羟基化(Laetiporus sulphureus AM498), d环酮Baeyer-Villiger氧化为内酯(Fusicoccum amygdali AM258)和3β-羟基酯化(Spicaria divaricata AM423)。大多数被检测的菌株能够将底物的17-氧基还原成3β,17β-二羟基雄激素-5-烯-7- 1。结果表明,蜜环菌AM296和葡萄球囊菌AM496的活性最高,反应产物为17β-醇。两株被试真菌也能够立体特异性地还原共轭7-酮基团导致7β-羟基脱氢表雄酮a (Inonotus radiatus AM70)或3β,7α,17β-三羟基雄酮-5-烯和3β,7β,17β-三羟基雄酮-5-烯的混合物(Piptoporus betulinus AM39)。新代谢产物的结构经质谱和核磁共振分析证实。他们也检查了他们的胆碱酯酶抑制活性在酶为基础的测定体外试验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The catalytic activity of mycelial fungi towards 7-oxo-DHEA – an endogenous derivative of steroidal hormone dehydroepiandrosterone

Seventeen species of fungi belonging to thirteen genera were screened for the ability to carry out the transformation of 7-oxo-DHEA (7-oxo-dehydroepiandrosterone). Some strains expressed new patterns of catalytic activity towards the substrate, namely 16β-hydroxylation (Laetiporus sulphureus AM498), Baeyer–Villiger oxidation of ketone in D-ring to lactone (Fusicoccum amygdali AM258) and esterification of the 3β-hydroxy group (Spicaria divaricata AM423). The majority of examined strains were able to reduce the 17-oxo group of the substrate to form 3β,17β-dihydroxy-androst-5-en-7-one. The highest activity was reached with Armillaria mellea AM296 and Ascosphaera apis AM496 for which complete conversion of the starting material was achieved, and the resulting 17β-alcohol was the sole reaction product. Two strains of tested fungi were also capable of stereospecific reduction of the conjugated 7-keto group leading to 7β-hydroxy-DHEA (Inonotus radiatus AM70) or a mixture of 3β,7α,17β-trihydroxy-androst-5-ene and 3β,7β,17β-trihydroxy-androst-5-ene (Piptoporus betulinus AM39). The structures of new metabolites were confirmed by MS and NMR analysis. They were also examined for their cholinesterase inhibitory activity in an enzymatic-based assay in vitro test.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbial Biotechnology
Microbial Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-MICROBIOLOGY
CiteScore
9.80
自引率
3.50%
发文量
162
审稿时长
6-12 weeks
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
期刊最新文献
Web alert: Fabrication with microbial spores Issue Information Web alert: Metagenomic mining for biotechnology Issue Information Non-A to E hepatitis in children: Detecting a novel viral epidemic during the COVID-19 pandemic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1