{"title":"昆士兰小实蝇(Bactrocera tryoni)的短距离和远距离传播及其与入侵潜力、不育昆虫技术和监测诱捕的相关性","authors":"A. Meats, J. E. Edgerton","doi":"10.1071/EA07291","DOIUrl":null,"url":null,"abstract":"Dispersal of immature and sexually mature Queensland fruit fly, Bactrocera tryoni (Froggatt) from releases made at a single point was assessed from recapture rates obtained by using arrays of traps. The recapture data (pertaining to distances up to 480 m) fitted both logarithmic and Cauchy models although the fits for the releases of immature flies were inferior because of high variability in catches at certain distances. When combined with data previously published for longer distances, a Cauchy model fitted data for releases of immature flies well and indicated that the median distance dispersed after emerging from the puparium was ~120 m and that 90% of flies would displace less than 800 m despite the fact that a consistent trend in declining catch rates can be obtained up to at least 85 km. This is consistent with the tail of the Cauchy distribution having a slope congruent with a negative power curve and thus being scale invariant for longer distances. The distribution of recaptured flies that were released as adults also fitted a Cauchy model with a tail of the same slope, suggesting that the spatial distribution of long-distance dispersers is not only scale invariant but also age invariant. This has significance to the ability of surveillance trapping arrays to detect infestations and also to methods of distributing insects for the sterile insect technique. Whereas the spread of invading propagules in the first generation is likely to be limited by a decline to non-viable density within 1 km or less of the incursion point, the influence of larger infestations on nearby uninfested regions would be limited by the longevity of the dispersers.","PeriodicalId":8636,"journal":{"name":"Australian Journal of Experimental Agriculture","volume":"48 1","pages":"1237-1245"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1071/EA07291","citationCount":"53","resultStr":"{\"title\":\"Short- and long-range dispersal of the Queensland fruit fly, Bactrocera tryoni and its relevance to invasive potential, sterile insect technique and surveillance trapping\",\"authors\":\"A. Meats, J. E. Edgerton\",\"doi\":\"10.1071/EA07291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dispersal of immature and sexually mature Queensland fruit fly, Bactrocera tryoni (Froggatt) from releases made at a single point was assessed from recapture rates obtained by using arrays of traps. The recapture data (pertaining to distances up to 480 m) fitted both logarithmic and Cauchy models although the fits for the releases of immature flies were inferior because of high variability in catches at certain distances. When combined with data previously published for longer distances, a Cauchy model fitted data for releases of immature flies well and indicated that the median distance dispersed after emerging from the puparium was ~120 m and that 90% of flies would displace less than 800 m despite the fact that a consistent trend in declining catch rates can be obtained up to at least 85 km. This is consistent with the tail of the Cauchy distribution having a slope congruent with a negative power curve and thus being scale invariant for longer distances. The distribution of recaptured flies that were released as adults also fitted a Cauchy model with a tail of the same slope, suggesting that the spatial distribution of long-distance dispersers is not only scale invariant but also age invariant. This has significance to the ability of surveillance trapping arrays to detect infestations and also to methods of distributing insects for the sterile insect technique. Whereas the spread of invading propagules in the first generation is likely to be limited by a decline to non-viable density within 1 km or less of the incursion point, the influence of larger infestations on nearby uninfested regions would be limited by the longevity of the dispersers.\",\"PeriodicalId\":8636,\"journal\":{\"name\":\"Australian Journal of Experimental Agriculture\",\"volume\":\"48 1\",\"pages\":\"1237-1245\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1071/EA07291\",\"citationCount\":\"53\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian Journal of Experimental Agriculture\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1071/EA07291\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Experimental Agriculture","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1071/EA07291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Short- and long-range dispersal of the Queensland fruit fly, Bactrocera tryoni and its relevance to invasive potential, sterile insect technique and surveillance trapping
Dispersal of immature and sexually mature Queensland fruit fly, Bactrocera tryoni (Froggatt) from releases made at a single point was assessed from recapture rates obtained by using arrays of traps. The recapture data (pertaining to distances up to 480 m) fitted both logarithmic and Cauchy models although the fits for the releases of immature flies were inferior because of high variability in catches at certain distances. When combined with data previously published for longer distances, a Cauchy model fitted data for releases of immature flies well and indicated that the median distance dispersed after emerging from the puparium was ~120 m and that 90% of flies would displace less than 800 m despite the fact that a consistent trend in declining catch rates can be obtained up to at least 85 km. This is consistent with the tail of the Cauchy distribution having a slope congruent with a negative power curve and thus being scale invariant for longer distances. The distribution of recaptured flies that were released as adults also fitted a Cauchy model with a tail of the same slope, suggesting that the spatial distribution of long-distance dispersers is not only scale invariant but also age invariant. This has significance to the ability of surveillance trapping arrays to detect infestations and also to methods of distributing insects for the sterile insect technique. Whereas the spread of invading propagules in the first generation is likely to be limited by a decline to non-viable density within 1 km or less of the incursion point, the influence of larger infestations on nearby uninfested regions would be limited by the longevity of the dispersers.