多核cpu和多核gpu上的并行SPN

Wilfried Kirschenmann, L. Plagne, A. Ponçot, S. Vialle
{"title":"多核cpu和多核gpu上的并行SPN","authors":"Wilfried Kirschenmann, L. Plagne, A. Ponçot, S. Vialle","doi":"10.1080/00411450.2010.533741","DOIUrl":null,"url":null,"abstract":"This paper presents two parallel Simplified PN (SPN) solver implementations for both multi-core Central Processing Units (CPU) and Graphics Processing Units (GPU). For a nuclear operator such as Électricité de France (EDF), the time required to carry out nuclear reactor core simulations is rather critical when dealing with production constraints. The SPN method provides a convenient trade-off between accuracy and numerical complexity and is used in several industrial simulations. The parallelization of the SPN algorithm reduces its computation time. To solve the problem on distributed memory machines such as PC clusters, Domain Decomposition Methods have been investigated. Complementary to this approach, this work aims to use emerging massively parallel processors such as the GPUs as well as current multi-core CPUs. Based on a fine grained parallelism, this solution achieves good performances on desktop machines. Our multi-core CPU and many-core GPU implementations allow us to solve 3D SPN problems, respectively, 10 and 36 times faster than our sequential CPU reference.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"39 1","pages":"255 - 281"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2010.533741","citationCount":"12","resultStr":"{\"title\":\"Parallel SPN on Multi-Core CPUS and Many-Core GPUS\",\"authors\":\"Wilfried Kirschenmann, L. Plagne, A. Ponçot, S. Vialle\",\"doi\":\"10.1080/00411450.2010.533741\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents two parallel Simplified PN (SPN) solver implementations for both multi-core Central Processing Units (CPU) and Graphics Processing Units (GPU). For a nuclear operator such as Électricité de France (EDF), the time required to carry out nuclear reactor core simulations is rather critical when dealing with production constraints. The SPN method provides a convenient trade-off between accuracy and numerical complexity and is used in several industrial simulations. The parallelization of the SPN algorithm reduces its computation time. To solve the problem on distributed memory machines such as PC clusters, Domain Decomposition Methods have been investigated. Complementary to this approach, this work aims to use emerging massively parallel processors such as the GPUs as well as current multi-core CPUs. Based on a fine grained parallelism, this solution achieves good performances on desktop machines. Our multi-core CPU and many-core GPU implementations allow us to solve 3D SPN problems, respectively, 10 and 36 times faster than our sequential CPU reference.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"39 1\",\"pages\":\"255 - 281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2010.533741\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2010.533741\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2010.533741","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了两种适用于多核中央处理器(CPU)和图形处理器(GPU)的并行简化PN (SPN)求解器实现。对于像Électricité de France (EDF)这样的核运营商来说,在处理生产限制时,进行核反应堆堆芯模拟所需的时间是相当关键的。SPN方法在精度和数值复杂性之间提供了一个方便的权衡,并在一些工业模拟中使用。SPN算法的并行化减少了算法的计算时间。为了解决PC集群等分布式存储机器上的问题,研究了领域分解方法。作为这种方法的补充,这项工作旨在使用新兴的大规模并行处理器,如gpu以及当前的多核cpu。基于细粒度并行性,该解决方案在桌面机器上实现了良好的性能。我们的多核CPU和多核GPU实现使我们能够解决3D SPN问题,分别比我们的顺序CPU参考快10倍和36倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel SPN on Multi-Core CPUS and Many-Core GPUS
This paper presents two parallel Simplified PN (SPN) solver implementations for both multi-core Central Processing Units (CPU) and Graphics Processing Units (GPU). For a nuclear operator such as Électricité de France (EDF), the time required to carry out nuclear reactor core simulations is rather critical when dealing with production constraints. The SPN method provides a convenient trade-off between accuracy and numerical complexity and is used in several industrial simulations. The parallelization of the SPN algorithm reduces its computation time. To solve the problem on distributed memory machines such as PC clusters, Domain Decomposition Methods have been investigated. Complementary to this approach, this work aims to use emerging massively parallel processors such as the GPUs as well as current multi-core CPUs. Based on a fine grained parallelism, this solution achieves good performances on desktop machines. Our multi-core CPU and many-core GPU implementations allow us to solve 3D SPN problems, respectively, 10 and 36 times faster than our sequential CPU reference.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport Theory and Statistical Physics
Transport Theory and Statistical Physics 物理-物理:数学物理
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
Whole lifecycle observation of single-spore germinated Streptomyces using a nanogap-stabilized microfluidic chip. A Comparison of Moment Closures for Linear Kinetic Transport Equations: The Line Source Benchmark Rigorous Asymptotic and Moment-Preserving Diffusion Approximations for Generalized Linear Boltzmann Transport in Arbitrary Dimension Existence and Stability Results for Second-Order Stochastic Equations Driven by Fractional Brownian Motion Comparing Two Opacity Models in Monte Carlo Radiative Heat Transfer: Computational Efficiency and Parallel Load Balancing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1