{"title":"随时间变化的热辐射传递的渐近电报员方程(P1)近似","authors":"Shay I. Heizler","doi":"10.1080/00411450.2012.671205","DOIUrl":null,"url":null,"abstract":"We develop the asymptotic P 1 approximation for the time-dependent thermal radiative transfer equation for a multidimensional general geometry. Careful derivation of the asymptotic P 1 equations, directly from the time-dependent Boltzmann equation, yields a particle velocity that is closer (v≈0.91c) to the exact value of c but is based on an asymptotic analysis rather than diffusion theory (infinite velocity) or conventional P 1 theory (which gives rise to the Telegrapher’s equation, ). While this approach does not match the exact value of c as does the P 1/3 method, the latter method is an ad hoc approach that has not been justified on theoretical grounds. This article provides the theoretical justification for the almost-correct value of c that yields improved results for the well-known (one-dimensional) Su-Olson benchmark for radiative transfer, for which we obtain a semi-analytic solution in the case of local thermodynamic equilibrium. We found that the asymptotic P 1 approximation yields a better solution than the diffusion, the classic P 1, and the P 1/3 approximations, yielding the correct steady-state behavior for the energy density and the (almost) correct particle velocity.","PeriodicalId":49420,"journal":{"name":"Transport Theory and Statistical Physics","volume":"41 1","pages":"175 - 199"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00411450.2012.671205","citationCount":"12","resultStr":"{\"title\":\"The Asymptotic Telegrapher’s Equation (P1) Approximation for Time-Dependent, Thermal Radiative Transfer\",\"authors\":\"Shay I. Heizler\",\"doi\":\"10.1080/00411450.2012.671205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop the asymptotic P 1 approximation for the time-dependent thermal radiative transfer equation for a multidimensional general geometry. Careful derivation of the asymptotic P 1 equations, directly from the time-dependent Boltzmann equation, yields a particle velocity that is closer (v≈0.91c) to the exact value of c but is based on an asymptotic analysis rather than diffusion theory (infinite velocity) or conventional P 1 theory (which gives rise to the Telegrapher’s equation, ). While this approach does not match the exact value of c as does the P 1/3 method, the latter method is an ad hoc approach that has not been justified on theoretical grounds. This article provides the theoretical justification for the almost-correct value of c that yields improved results for the well-known (one-dimensional) Su-Olson benchmark for radiative transfer, for which we obtain a semi-analytic solution in the case of local thermodynamic equilibrium. We found that the asymptotic P 1 approximation yields a better solution than the diffusion, the classic P 1, and the P 1/3 approximations, yielding the correct steady-state behavior for the energy density and the (almost) correct particle velocity.\",\"PeriodicalId\":49420,\"journal\":{\"name\":\"Transport Theory and Statistical Physics\",\"volume\":\"41 1\",\"pages\":\"175 - 199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/00411450.2012.671205\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Theory and Statistical Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00411450.2012.671205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Theory and Statistical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00411450.2012.671205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Asymptotic Telegrapher’s Equation (P1) Approximation for Time-Dependent, Thermal Radiative Transfer
We develop the asymptotic P 1 approximation for the time-dependent thermal radiative transfer equation for a multidimensional general geometry. Careful derivation of the asymptotic P 1 equations, directly from the time-dependent Boltzmann equation, yields a particle velocity that is closer (v≈0.91c) to the exact value of c but is based on an asymptotic analysis rather than diffusion theory (infinite velocity) or conventional P 1 theory (which gives rise to the Telegrapher’s equation, ). While this approach does not match the exact value of c as does the P 1/3 method, the latter method is an ad hoc approach that has not been justified on theoretical grounds. This article provides the theoretical justification for the almost-correct value of c that yields improved results for the well-known (one-dimensional) Su-Olson benchmark for radiative transfer, for which we obtain a semi-analytic solution in the case of local thermodynamic equilibrium. We found that the asymptotic P 1 approximation yields a better solution than the diffusion, the classic P 1, and the P 1/3 approximations, yielding the correct steady-state behavior for the energy density and the (almost) correct particle velocity.