一种具有电荷增强活性的二硫化钼纳米酶用于超声介导的级联催化肿瘤铁凋亡

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2022-12-30 DOI:10.1002/anie.202217448
Longwei Wang, Xiaodi Zhang, Zhen You, Zhongwei Yang, Dr. Mengyu Guo, Jiawei Guo, He Liu, Xiaoyu Zhang, Zhuo Wang, Prof. Aizhu Wang, Prof. Yawei Lv, Dr. Jian Zhang, Prof. Xin Yu, Prof. Jing Liu, Prof. Chunying Chen
{"title":"一种具有电荷增强活性的二硫化钼纳米酶用于超声介导的级联催化肿瘤铁凋亡","authors":"Longwei Wang,&nbsp;Xiaodi Zhang,&nbsp;Zhen You,&nbsp;Zhongwei Yang,&nbsp;Dr. Mengyu Guo,&nbsp;Jiawei Guo,&nbsp;He Liu,&nbsp;Xiaoyu Zhang,&nbsp;Zhuo Wang,&nbsp;Prof. Aizhu Wang,&nbsp;Prof. Yawei Lv,&nbsp;Dr. Jian Zhang,&nbsp;Prof. Xin Yu,&nbsp;Prof. Jing Liu,&nbsp;Prof. Chunying Chen","doi":"10.1002/anie.202217448","DOIUrl":null,"url":null,"abstract":"<p>The deficient catalytic activity of nanozymes and insufficient endogenous H<sub>2</sub>O<sub>2</sub> in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS<sub>2</sub> nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS<sub>2</sub>@CA) is presented that is made from few-layer MoS<sub>2</sub> nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H<sub>2</sub>O<sub>2</sub> self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis\",\"authors\":\"Longwei Wang,&nbsp;Xiaodi Zhang,&nbsp;Zhen You,&nbsp;Zhongwei Yang,&nbsp;Dr. Mengyu Guo,&nbsp;Jiawei Guo,&nbsp;He Liu,&nbsp;Xiaoyu Zhang,&nbsp;Zhuo Wang,&nbsp;Prof. Aizhu Wang,&nbsp;Prof. Yawei Lv,&nbsp;Dr. Jian Zhang,&nbsp;Prof. Xin Yu,&nbsp;Prof. Jing Liu,&nbsp;Prof. Chunying Chen\",\"doi\":\"10.1002/anie.202217448\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The deficient catalytic activity of nanozymes and insufficient endogenous H<sub>2</sub>O<sub>2</sub> in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS<sub>2</sub> nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS<sub>2</sub>@CA) is presented that is made from few-layer MoS<sub>2</sub> nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H<sub>2</sub>O<sub>2</sub> self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202217448\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202217448","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

纳米酶的催化活性不足和肿瘤微环境(TME)中内源性H2O2不足是纳米酶介导的催化肿瘤治疗的主要障碍。由于电子转移是催化氧化还原反应的基本本质,我们探索了基于正电荷和负电荷的酶活性的影响因素,实验和理论证明了这些因素可以增强MoS2纳米酶的过氧化物酶(POD)样活性。因此,提出了一种酸性肿瘤微环境响应和超声介导级联纳米催化剂(BTO/MoS2@CA),该纳米催化剂由生长在压电四方钛酸钡(T-BTO)表面的几层MoS2纳米片制成,并用ph响应肉桂醛(CA)修饰。ph响应ca介导的H2O2自我供应、超声介导的电荷增强酶活性和谷胱甘肽(GSH)耗竭的整合可以实现失衡的氧化还原稳态,从而以最小的副作用导致有效的肿瘤铁凋亡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis

The deficient catalytic activity of nanozymes and insufficient endogenous H2O2 in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS2 nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS2@CA) is presented that is made from few-layer MoS2 nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H2O2 self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Activation and Deactivation of Chirality Transfer in the Superbundles of Sequence‐defined Stereoisomers Construction of slide-ring polymers based on pillar[5]arene/alkyl chain host−guest interactions Photoredox-Catalyzed [3+2] annulation of Aromatic Amides with Olefins via Iminium Intermediates Efficient Electrosynthesis of Valuable para-Benzoquinone from Aqueous Phenol on NiRu Hybrid Catalysts Conformational Modulation of Efficient Macrocyclic Emitters Featuring Delayed Fluorescence by Conjugation Length and Cavity Dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1