单分子磁体分子设计的现代物理方法

IF 7 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Russian Chemical Reviews Pub Date : 2021-01-01 DOI:10.1070/RCR5002
V. Novikov, Y. Nelyubina
{"title":"单分子磁体分子设计的现代物理方法","authors":"V. Novikov, Y. Nelyubina","doi":"10.1070/RCR5002","DOIUrl":null,"url":null,"abstract":"Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism. The bibliography includes 224 references.","PeriodicalId":21523,"journal":{"name":"Russian Chemical Reviews","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modern physical methods for the molecular design of single-molecule magnets\",\"authors\":\"V. Novikov, Y. Nelyubina\",\"doi\":\"10.1070/RCR5002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism. The bibliography includes 224 references.\",\"PeriodicalId\":21523,\"journal\":{\"name\":\"Russian Chemical Reviews\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1070/RCR5002\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1070/RCR5002","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

许多顺磁性金属配合物已经成为独特的磁性材料(单分子磁体),它们在单分子水平上的行为与传统磁体一样,从而使它们有可能用于现代设备中的数据存储和处理。然而,这些复合物的合理设计需要深刻理解单分子磁铁行为背后的物理定律,决定磁性的磁弛豫机制以及这些性质与单分子磁铁结构的关系。本文重点介绍了提供这种理解的物理方法,包括磁强计、电子顺磁和核磁共振波谱、光谱学和x射线衍射的不同版本和不同组合。其中许多方法传统上用于确定新化合物的组成和结构。然而,它们很少用于研究分子磁学。参考书目包括参考文献224篇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modern physical methods for the molecular design of single-molecule magnets
Many paramagnetic metal complexes have emerged as unique magnetic materials (single-molecule magnets), which behave as conventional magnets at the single-molecule level, thereby making it possible to use them in modern devices for data storage and processing. The rational design of these complexes, however, requires a deep understanding of the physical laws behind a single-molecule magnet behaviour, the mechanisms of magnetic relaxation that determines the magnetic properties and the relationship of these properties with the structure of single-molecule magnets. This review focuses on the physical methods providing such understanding, including different versions and various combinations of magnetometry, electron paramagnetic and nuclear magnetic resonance spectroscopy, optical spectroscopy and X-ray diffraction. Many of these methods are traditionally used to determine the composition and structure of new chemical compounds. However, they are rarely applied to study molecular magnetism. The bibliography includes 224 references.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Chemical Reviews
Russian Chemical Reviews 化学-化学综合
CiteScore
13.00
自引率
5.20%
发文量
27
审稿时长
6-12 weeks
期刊介绍: Russian Chemical Reviews serves as a complete translation of the esteemed monthly review journal Uspekhi Khimii, which has been a prominent figure in Russian scientific journals since its establishment in 1932. It offers comprehensive access to the advancements made by chemists from Russia and other former Soviet Union countries. Established in 1932, Russian Chemical Reviews is committed to publishing timely and significant review articles encompassing various facets of modern chemistry, including chemical physics, physical chemistry, computational and theoretical chemistry, catalysis, coordination chemistry, analytical chemistry, organic, organometallic, and organoelement chemistry, chemistry of macromolecules, applied chemistry, biochemistry, bio-organic chemistry, biomolecular chemistry, medicinal chemistry, materials chemistry, nanochemistry, nanostructures, and environmental chemistry.
期刊最新文献
The chemistry of heterocycles in the 21st century Multisensors based on electrolyte-gated organic field-effect transistors with aptamers as recognition elements: current state of research Quantum dots: modern methods of synthesis and optical properties Single-atom catalysts in methane chemistry Thermodynamics and vapourization of Cs-, Sr-, Ba-containing oxide systems valid for nuclear safety problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1