{"title":"海洋放射化学中的吸附方法","authors":"I. Dovhyi, N. Bezhin, I. Tananaev","doi":"10.1070/RCR5015","DOIUrl":null,"url":null,"abstract":"The review presents the general methodology of using sorption methods to solve problems of marine radiochemistry, including sampling, preconcentration and radiochemical preparation and methods for measuring the activity of radionuclides. The possible methodological errors at various stages of sampling and sample concentration are discussed. The most widely used artificial (90Sr, 134Cs, 137Cs, 239Pu, 240Pu), natural (210Pb, 210Po; radium quartet: 223Ra, 224Ra, 226Ra, 228Ra; thorium isotopes, mainly 234Th) and cosmogenic (7Be, 32P, 33P) radiotracers are considered. The sorption of uranium from seawater is not addressed, since its concentration in seawater is usually calculated from the known dependence of uranium concentration on seawater salinity. The bibliography includes 200 references.","PeriodicalId":21523,"journal":{"name":"Russian Chemical Reviews","volume":"90 1","pages":"1544 - 1565"},"PeriodicalIF":7.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Sorption methods in marine radiochemistry\",\"authors\":\"I. Dovhyi, N. Bezhin, I. Tananaev\",\"doi\":\"10.1070/RCR5015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The review presents the general methodology of using sorption methods to solve problems of marine radiochemistry, including sampling, preconcentration and radiochemical preparation and methods for measuring the activity of radionuclides. The possible methodological errors at various stages of sampling and sample concentration are discussed. The most widely used artificial (90Sr, 134Cs, 137Cs, 239Pu, 240Pu), natural (210Pb, 210Po; radium quartet: 223Ra, 224Ra, 226Ra, 228Ra; thorium isotopes, mainly 234Th) and cosmogenic (7Be, 32P, 33P) radiotracers are considered. The sorption of uranium from seawater is not addressed, since its concentration in seawater is usually calculated from the known dependence of uranium concentration on seawater salinity. The bibliography includes 200 references.\",\"PeriodicalId\":21523,\"journal\":{\"name\":\"Russian Chemical Reviews\",\"volume\":\"90 1\",\"pages\":\"1544 - 1565\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1070/RCR5015\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1070/RCR5015","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The review presents the general methodology of using sorption methods to solve problems of marine radiochemistry, including sampling, preconcentration and radiochemical preparation and methods for measuring the activity of radionuclides. The possible methodological errors at various stages of sampling and sample concentration are discussed. The most widely used artificial (90Sr, 134Cs, 137Cs, 239Pu, 240Pu), natural (210Pb, 210Po; radium quartet: 223Ra, 224Ra, 226Ra, 228Ra; thorium isotopes, mainly 234Th) and cosmogenic (7Be, 32P, 33P) radiotracers are considered. The sorption of uranium from seawater is not addressed, since its concentration in seawater is usually calculated from the known dependence of uranium concentration on seawater salinity. The bibliography includes 200 references.
期刊介绍:
Russian Chemical Reviews serves as a complete translation of the esteemed monthly review journal Uspekhi Khimii, which has been a prominent figure in Russian scientific journals since its establishment in 1932. It offers comprehensive access to the advancements made by chemists from Russia and other former Soviet Union countries.
Established in 1932, Russian Chemical Reviews is committed to publishing timely and significant review articles encompassing various facets of modern chemistry, including chemical physics, physical chemistry, computational and theoretical chemistry, catalysis, coordination chemistry, analytical chemistry, organic, organometallic, and organoelement chemistry, chemistry of macromolecules, applied chemistry, biochemistry, bio-organic chemistry, biomolecular chemistry, medicinal chemistry, materials chemistry, nanochemistry, nanostructures, and environmental chemistry.