随机效应自回归模型及其在多微观结构样品表征中的应用

Nailong Zhang, Qingyu Yang
{"title":"随机效应自回归模型及其在多微观结构样品表征中的应用","authors":"Nailong Zhang, Qingyu Yang","doi":"10.1080/0740817X.2015.1047069","DOIUrl":null,"url":null,"abstract":"ABSTRACT The microstructure of a material can strongly influence its properties such as strength, hardness, wear resistance, etc., which in turn play an important role in the quality of products produced from these materials. Existing studies on a material's microstructure have mainly focused on the characteristics of a single microstructure sample and the variation between different microstructure samples is ignored. In this article, we propose a novel random effect autologistic regression model that can be used to characterize the variation in microstructures between different samples for two-phase materials that consist of two distinct parts with different chemical structures. The proposed model differs from the classic autologistic regression model in that we consider the unit-to-unit variability among the microstructure samples, which is characterized by the random effect parameters. To estimate the model parameters given a set of microstructure samples, we first derive a likelihood function, based on which a maximum likelihood estimation method is developed. However, maximizing the likelihood function of the proposed model is generally difficult as it has a complex form. To overcome this challenge, we further develop a stochastic approximation expectation maximization algorithm to estimate the model parameters. A simulation study is conducted to verify the proposed methodology. A real-world example of a dual-phase high strength steel is used to illustrate the developed methods.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"34 - 42"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1047069","citationCount":"11","resultStr":"{\"title\":\"A random effect autologistic regression model with application to the characterization of multiple microstructure samples\",\"authors\":\"Nailong Zhang, Qingyu Yang\",\"doi\":\"10.1080/0740817X.2015.1047069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The microstructure of a material can strongly influence its properties such as strength, hardness, wear resistance, etc., which in turn play an important role in the quality of products produced from these materials. Existing studies on a material's microstructure have mainly focused on the characteristics of a single microstructure sample and the variation between different microstructure samples is ignored. In this article, we propose a novel random effect autologistic regression model that can be used to characterize the variation in microstructures between different samples for two-phase materials that consist of two distinct parts with different chemical structures. The proposed model differs from the classic autologistic regression model in that we consider the unit-to-unit variability among the microstructure samples, which is characterized by the random effect parameters. To estimate the model parameters given a set of microstructure samples, we first derive a likelihood function, based on which a maximum likelihood estimation method is developed. However, maximizing the likelihood function of the proposed model is generally difficult as it has a complex form. To overcome this challenge, we further develop a stochastic approximation expectation maximization algorithm to estimate the model parameters. A simulation study is conducted to verify the proposed methodology. A real-world example of a dual-phase high strength steel is used to illustrate the developed methods.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"34 - 42\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1047069\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1047069\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1047069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

材料的微观结构对材料的强度、硬度、耐磨性等性能有很大的影响,而这些性能又对材料生产的产品质量起着重要的作用。现有的材料微观结构研究主要集中在单一微观结构样品的特征上,忽略了不同微观结构样品之间的差异。在本文中,我们提出了一种新的随机效应自适应回归模型,该模型可用于表征由两个不同化学结构的不同部分组成的两相材料的不同样品之间微观结构的变化。该模型与经典的自适应回归模型的不同之处在于,我们考虑了微观结构样本之间的单位间可变性,这种可变性以随机效应参数为特征。为了估计给定一组微观结构样品的模型参数,我们首先推导了似然函数,并在此基础上建立了最大似然估计方法。然而,由于所提出模型的形式复杂,使其似然函数最大化通常是困难的。为了克服这一挑战,我们进一步开发了一种随机逼近期望最大化算法来估计模型参数。通过仿真研究验证了所提出的方法。以实际的双相高强度钢为例说明了所开发的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A random effect autologistic regression model with application to the characterization of multiple microstructure samples
ABSTRACT The microstructure of a material can strongly influence its properties such as strength, hardness, wear resistance, etc., which in turn play an important role in the quality of products produced from these materials. Existing studies on a material's microstructure have mainly focused on the characteristics of a single microstructure sample and the variation between different microstructure samples is ignored. In this article, we propose a novel random effect autologistic regression model that can be used to characterize the variation in microstructures between different samples for two-phase materials that consist of two distinct parts with different chemical structures. The proposed model differs from the classic autologistic regression model in that we consider the unit-to-unit variability among the microstructure samples, which is characterized by the random effect parameters. To estimate the model parameters given a set of microstructure samples, we first derive a likelihood function, based on which a maximum likelihood estimation method is developed. However, maximizing the likelihood function of the proposed model is generally difficult as it has a complex form. To overcome this challenge, we further develop a stochastic approximation expectation maximization algorithm to estimate the model parameters. A simulation study is conducted to verify the proposed methodology. A real-world example of a dual-phase high strength steel is used to illustrate the developed methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1