双产品回收系统的生产计划和库存控制

Jie Pan, Yi Tao, L. Lee, E. P. Chew
{"title":"双产品回收系统的生产计划和库存控制","authors":"Jie Pan, Yi Tao, L. Lee, E. P. Chew","doi":"10.1080/0740817X.2015.1056389","DOIUrl":null,"url":null,"abstract":"The significance of product recovery through remanufacturing has been widely recognized and has compelled manufacturers to incorporate product recovery activities into normal manufacturing processes. Consequently, increasing attention has been paid to production and inventory management of the product recovery system where demand is satisfied through either manufacturing brand-new products or remanufacturing returned products into new ones. In this work, we investigate a recovery system with two product types and two return flows. A periodic-review inventory problem is addressed in the two-product recovery system and an approximate dynamic programming approach is proposed to obtain production and recovery decisions. A single-period problem is first solved and the optimal solution is characterized by a multilevel threshold policy. For the multi-period problem, we show that the threshold levels of each period are solely dependent on the gradients of the cost-to-go function at points of interest after approximation. The gradients are estimated by an infinitesimal perturbation analysis–based method and a backward induction approach is then applied to derive the threshold levels of each period. Numerical experiments are conducted under different scenarios and the threshold policy is shown to outperform two other heuristic policies.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"47 1","pages":"1342 - 1362"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1056389","citationCount":"3","resultStr":"{\"title\":\"Production planning and inventory control for a two-product recovery system\",\"authors\":\"Jie Pan, Yi Tao, L. Lee, E. P. Chew\",\"doi\":\"10.1080/0740817X.2015.1056389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The significance of product recovery through remanufacturing has been widely recognized and has compelled manufacturers to incorporate product recovery activities into normal manufacturing processes. Consequently, increasing attention has been paid to production and inventory management of the product recovery system where demand is satisfied through either manufacturing brand-new products or remanufacturing returned products into new ones. In this work, we investigate a recovery system with two product types and two return flows. A periodic-review inventory problem is addressed in the two-product recovery system and an approximate dynamic programming approach is proposed to obtain production and recovery decisions. A single-period problem is first solved and the optimal solution is characterized by a multilevel threshold policy. For the multi-period problem, we show that the threshold levels of each period are solely dependent on the gradients of the cost-to-go function at points of interest after approximation. The gradients are estimated by an infinitesimal perturbation analysis–based method and a backward induction approach is then applied to derive the threshold levels of each period. Numerical experiments are conducted under different scenarios and the threshold policy is shown to outperform two other heuristic policies.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"47 1\",\"pages\":\"1342 - 1362\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1056389\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1056389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1056389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

通过再制造回收产品的重要性已得到广泛认可,并迫使制造商将产品回收活动纳入正常的制造过程。因此,产品回收系统的生产和库存管理越来越受到重视,通过制造全新产品或将退货产品再制造成新的产品来满足需求。在这项工作中,我们研究了一个具有两种产品类型和两种回流的回收系统。研究了两产品回收系统的周期评审库存问题,提出了一种近似动态规划方法来求解生产和回收决策。首先求解单周期问题,最优解具有多级阈值策略的特征。对于多周期问题,我们证明了每个周期的阈值水平仅依赖于兴趣点附近的成本函数的梯度。采用基于微扰分析的方法估计梯度,然后采用逆向归纳方法推导出每个周期的阈值水平。在不同的场景下进行了数值实验,结果表明阈值策略优于其他两种启发式策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Production planning and inventory control for a two-product recovery system
The significance of product recovery through remanufacturing has been widely recognized and has compelled manufacturers to incorporate product recovery activities into normal manufacturing processes. Consequently, increasing attention has been paid to production and inventory management of the product recovery system where demand is satisfied through either manufacturing brand-new products or remanufacturing returned products into new ones. In this work, we investigate a recovery system with two product types and two return flows. A periodic-review inventory problem is addressed in the two-product recovery system and an approximate dynamic programming approach is proposed to obtain production and recovery decisions. A single-period problem is first solved and the optimal solution is characterized by a multilevel threshold policy. For the multi-period problem, we show that the threshold levels of each period are solely dependent on the gradients of the cost-to-go function at points of interest after approximation. The gradients are estimated by an infinitesimal perturbation analysis–based method and a backward induction approach is then applied to derive the threshold levels of each period. Numerical experiments are conducted under different scenarios and the threshold policy is shown to outperform two other heuristic policies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1