当保护效果不确定时,如何将保护资源分配给设施

Hugh R. Medal, E. Pohl, M. Rossetti
{"title":"当保护效果不确定时,如何将保护资源分配给设施","authors":"Hugh R. Medal, E. Pohl, M. Rossetti","doi":"10.1080/0740817X.2015.1078013","DOIUrl":null,"url":null,"abstract":"We study a new facility protection problem in which one must allocate scarce protection resources to a set of facilities given that allocating resources to a facility only has a probabilistic effect on the facility’s post-disruption capacity. This study seeks to test three common assumptions made in the literature on modeling infrastructure systems subject to disruptions: 1) perfect protection, e.g., protecting an element makes it fail-proof, 2) binary protection, i.e., an element is either fully protected or unprotected, and 3) binary state, i.e., disrupted elements are fully operational or non-operational. We model this facility protection problem as a two-stage stochastic program with endogenous uncertainty. Because this stochastic program is non-convex we present a greedy algorithm and show that it has a worst-case performance of 0.63. However, empirical results indicate that the average performance is much better. In addition, experimental results indicate that the mean-value version of this model, in which parameters are set to their mean values, performs close to optimal. Results also indicate that the perfect and binary protection assumptions together significantly affect the performance of a model. On the other hand, the binary state assumption was found to have a smaller effect.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"220 - 234"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1078013","citationCount":"20","resultStr":"{\"title\":\"Allocating Protection Resources to Facilities When the Effect of Protection is Uncertain\",\"authors\":\"Hugh R. Medal, E. Pohl, M. Rossetti\",\"doi\":\"10.1080/0740817X.2015.1078013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a new facility protection problem in which one must allocate scarce protection resources to a set of facilities given that allocating resources to a facility only has a probabilistic effect on the facility’s post-disruption capacity. This study seeks to test three common assumptions made in the literature on modeling infrastructure systems subject to disruptions: 1) perfect protection, e.g., protecting an element makes it fail-proof, 2) binary protection, i.e., an element is either fully protected or unprotected, and 3) binary state, i.e., disrupted elements are fully operational or non-operational. We model this facility protection problem as a two-stage stochastic program with endogenous uncertainty. Because this stochastic program is non-convex we present a greedy algorithm and show that it has a worst-case performance of 0.63. However, empirical results indicate that the average performance is much better. In addition, experimental results indicate that the mean-value version of this model, in which parameters are set to their mean values, performs close to optimal. Results also indicate that the perfect and binary protection assumptions together significantly affect the performance of a model. On the other hand, the binary state assumption was found to have a smaller effect.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"220 - 234\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1078013\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1078013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1078013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了一个新的设施保护问题,该问题必须将稀缺的保护资源分配给一组设施,并且分配资源对设施的破坏后能力只有概率影响。本研究试图测试在对受中断影响的基础设施系统建模的文献中提出的三个常见假设:1)完美保护,例如,保护一个元素使其防故障;2)二元保护,即,一个元素要么完全保护,要么不受保护;3)二元状态,即,中断的元素是完全可操作的或非可操作的。我们将该设施保护问题建模为具有内生不确定性的两阶段随机规划。由于这个随机程序是非凸的,我们提出了一个贪心算法,并证明它的最坏情况性能为0.63。然而,实证结果表明,平均性能要好得多。此外,实验结果表明,该模型的均值版本,其中参数设置为其均值,性能接近最优。结果还表明,完美保护和二元保护假设共同显著影响模型的性能。另一方面,二元状态假设的影响较小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Allocating Protection Resources to Facilities When the Effect of Protection is Uncertain
We study a new facility protection problem in which one must allocate scarce protection resources to a set of facilities given that allocating resources to a facility only has a probabilistic effect on the facility’s post-disruption capacity. This study seeks to test three common assumptions made in the literature on modeling infrastructure systems subject to disruptions: 1) perfect protection, e.g., protecting an element makes it fail-proof, 2) binary protection, i.e., an element is either fully protected or unprotected, and 3) binary state, i.e., disrupted elements are fully operational or non-operational. We model this facility protection problem as a two-stage stochastic program with endogenous uncertainty. Because this stochastic program is non-convex we present a greedy algorithm and show that it has a worst-case performance of 0.63. However, empirical results indicate that the average performance is much better. In addition, experimental results indicate that the mean-value version of this model, in which parameters are set to their mean values, performs close to optimal. Results also indicate that the perfect and binary protection assumptions together significantly affect the performance of a model. On the other hand, the binary state assumption was found to have a smaller effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1