ITS下车辆路径的分层时变最短路径算法

Mark M. Nejad, Lena Mashayekhy, R. Chinnam, A. Phillips
{"title":"ITS下车辆路径的分层时变最短路径算法","authors":"Mark M. Nejad, Lena Mashayekhy, R. Chinnam, A. Phillips","doi":"10.1080/0740817X.2015.1078523","DOIUrl":null,"url":null,"abstract":"ABSTRACT The development of efficient algorithms for vehicle routing on time-dependent networks is one of the major challenges in routing under intelligent transportation systems. Existing vehicle routing navigation systems, whether built-in or portable, lack the ability to rely on online servers. Such systems must compute the route in a stand-alone mode with limited hardware processing/memory capacity given an origin/destination pair and departure time. In this article, we propose a computationally efficient, yet effective, hierarchical algorithm to solve the time-dependent shortest path problem. Our proposed algorithm exploits community-based hierarchical representations of road networks, and it recursively reduces the search space in each level of the hierarchy by using our proposed search strategy algorithm. Our proposed algorithm is efficient in terms of finding shortest paths in milliseconds for large-scale road networks while eliminating the need to store preprocessed shortest paths, shortcuts, lower bounds, etc. We demonstrate the performance of the proposed algorithm using data from Detroit, New York, and San Francisco road networks.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"158 - 169"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1078523","citationCount":"11","resultStr":"{\"title\":\"Hierarchical time-dependent shortest path algorithms for vehicle routing under ITS\",\"authors\":\"Mark M. Nejad, Lena Mashayekhy, R. Chinnam, A. Phillips\",\"doi\":\"10.1080/0740817X.2015.1078523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The development of efficient algorithms for vehicle routing on time-dependent networks is one of the major challenges in routing under intelligent transportation systems. Existing vehicle routing navigation systems, whether built-in or portable, lack the ability to rely on online servers. Such systems must compute the route in a stand-alone mode with limited hardware processing/memory capacity given an origin/destination pair and departure time. In this article, we propose a computationally efficient, yet effective, hierarchical algorithm to solve the time-dependent shortest path problem. Our proposed algorithm exploits community-based hierarchical representations of road networks, and it recursively reduces the search space in each level of the hierarchy by using our proposed search strategy algorithm. Our proposed algorithm is efficient in terms of finding shortest paths in milliseconds for large-scale road networks while eliminating the need to store preprocessed shortest paths, shortcuts, lower bounds, etc. We demonstrate the performance of the proposed algorithm using data from Detroit, New York, and San Francisco road networks.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"158 - 169\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1078523\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1078523\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1078523","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

开发有效的时间相关网络车辆路径算法是智能交通系统下路径选择的主要挑战之一。现有的车辆路线导航系统,无论是内置的还是便携式的,都缺乏依赖在线服务器的能力。这样的系统必须在给定出发地/目的地对和出发时间的情况下,在硬件处理和内存容量有限的独立模式下计算路线。在本文中,我们提出了一种计算效率高且有效的分层算法来解决时间相关的最短路径问题。我们提出的算法利用基于社区的道路网络层次表示,并通过使用我们提出的搜索策略算法递归地减少层次结构中每个层次的搜索空间。我们提出的算法在毫秒内找到大规模道路网络的最短路径方面是有效的,同时消除了存储预处理最短路径、捷径、下界等的需要。我们使用来自底特律、纽约和旧金山道路网络的数据来演示所提出算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hierarchical time-dependent shortest path algorithms for vehicle routing under ITS
ABSTRACT The development of efficient algorithms for vehicle routing on time-dependent networks is one of the major challenges in routing under intelligent transportation systems. Existing vehicle routing navigation systems, whether built-in or portable, lack the ability to rely on online servers. Such systems must compute the route in a stand-alone mode with limited hardware processing/memory capacity given an origin/destination pair and departure time. In this article, we propose a computationally efficient, yet effective, hierarchical algorithm to solve the time-dependent shortest path problem. Our proposed algorithm exploits community-based hierarchical representations of road networks, and it recursively reduces the search space in each level of the hierarchy by using our proposed search strategy algorithm. Our proposed algorithm is efficient in terms of finding shortest paths in milliseconds for large-scale road networks while eliminating the need to store preprocessed shortest paths, shortcuts, lower bounds, etc. We demonstrate the performance of the proposed algorithm using data from Detroit, New York, and San Francisco road networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1