基于仿真的帕累托估计的配型设计问题数量特征最大化

S. R. Hunter, B. McClosky
{"title":"基于仿真的帕累托估计的配型设计问题数量特征最大化","authors":"S. R. Hunter, B. McClosky","doi":"10.1080/0740817X.2015.1096430","DOIUrl":null,"url":null,"abstract":"ABSTRACT Commercial plant breeders improve economically important traits by selectively mating individuals from a given breeding population. Potential pairings are evaluated before the growing season using Monte Carlo simulation, and a mating design is created to allocate a fixed breeding budget across the parent pairs to achieve desired population outcomes. We introduce a novel objective function for this mating design problem that accurately models the goals of a certain class of breeding experiments. The resulting mating design problem is a computationally burdensome simulation optimization problem on a combinatorially large set of feasible points. We propose a two-step solution to this problem: (i) simulate to estimate the performance of each parent pair and (ii) solve an estimated version of the mating design problem, which is an integer program, using the simulation output. To reduce the computational burden when implementing steps (i) and (ii), we analytically identify a Pareto set of parent pairs that will receive the entire breeding budget at optimality. Since we wish to estimate the Pareto set in step (i) as input to step (ii), we derive an asymptotically optimal simulation budget allocation to estimate the Pareto set that, in our numerical experiments, out-performs Multi-objective Optimal Computing Budget Allocation in reducing misclassifications. Given the estimated Pareto set, we provide a branch-and-bound algorithm to solve the estimated mating design problem. Our approach dramatically reduces the computational effort required to solve the mating design problem when compared with naïve methods.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"48 1","pages":"565 - 578"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1096430","citationCount":"24","resultStr":"{\"title\":\"Maximizing quantitative traits in the mating design problem via simulation-based Pareto estimation\",\"authors\":\"S. R. Hunter, B. McClosky\",\"doi\":\"10.1080/0740817X.2015.1096430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Commercial plant breeders improve economically important traits by selectively mating individuals from a given breeding population. Potential pairings are evaluated before the growing season using Monte Carlo simulation, and a mating design is created to allocate a fixed breeding budget across the parent pairs to achieve desired population outcomes. We introduce a novel objective function for this mating design problem that accurately models the goals of a certain class of breeding experiments. The resulting mating design problem is a computationally burdensome simulation optimization problem on a combinatorially large set of feasible points. We propose a two-step solution to this problem: (i) simulate to estimate the performance of each parent pair and (ii) solve an estimated version of the mating design problem, which is an integer program, using the simulation output. To reduce the computational burden when implementing steps (i) and (ii), we analytically identify a Pareto set of parent pairs that will receive the entire breeding budget at optimality. Since we wish to estimate the Pareto set in step (i) as input to step (ii), we derive an asymptotically optimal simulation budget allocation to estimate the Pareto set that, in our numerical experiments, out-performs Multi-objective Optimal Computing Budget Allocation in reducing misclassifications. Given the estimated Pareto set, we provide a branch-and-bound algorithm to solve the estimated mating design problem. Our approach dramatically reduces the computational effort required to solve the mating design problem when compared with naïve methods.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"48 1\",\"pages\":\"565 - 578\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1096430\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1096430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1096430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

摘要:商业植物育种者通过对特定育种群体中的个体进行选择性交配来改善经济上重要的性状。在生长季节到来之前,利用蒙特卡罗模拟对潜在的配对进行评估,并创建交配设计,在亲本对之间分配固定的繁殖预算,以实现预期的种群结果。我们为这一交配设计问题引入了一个新的目标函数,它能准确地模拟某一类育种实验的目标。由此产生的配合设计问题是一个计算量很大的可行点组合上的仿真优化问题。我们提出了这个问题的两步解决方案:(i)模拟以估计每个父对的性能;(ii)使用模拟输出解决一个估计版本的交配设计问题,这是一个整数程序。为了减少执行步骤(i)和(ii)时的计算负担,我们分析地确定了一个Pareto亲本对集,该亲本对集将在最优状态下获得整个育种预算。由于我们希望估计步骤(i)中的帕累托集作为步骤(ii)的输入,我们推导了一个渐近最优的模拟预算分配来估计帕累托集,在我们的数值实验中,在减少错误分类方面优于多目标最优计算预算分配。给出了估计Pareto集,给出了一种分支定界算法来求解估计匹配设计问题。与naïve方法相比,我们的方法大大减少了解决配合设计问题所需的计算量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Maximizing quantitative traits in the mating design problem via simulation-based Pareto estimation
ABSTRACT Commercial plant breeders improve economically important traits by selectively mating individuals from a given breeding population. Potential pairings are evaluated before the growing season using Monte Carlo simulation, and a mating design is created to allocate a fixed breeding budget across the parent pairs to achieve desired population outcomes. We introduce a novel objective function for this mating design problem that accurately models the goals of a certain class of breeding experiments. The resulting mating design problem is a computationally burdensome simulation optimization problem on a combinatorially large set of feasible points. We propose a two-step solution to this problem: (i) simulate to estimate the performance of each parent pair and (ii) solve an estimated version of the mating design problem, which is an integer program, using the simulation output. To reduce the computational burden when implementing steps (i) and (ii), we analytically identify a Pareto set of parent pairs that will receive the entire breeding budget at optimality. Since we wish to estimate the Pareto set in step (i) as input to step (ii), we derive an asymptotically optimal simulation budget allocation to estimate the Pareto set that, in our numerical experiments, out-performs Multi-objective Optimal Computing Budget Allocation in reducing misclassifications. Given the estimated Pareto set, we provide a branch-and-bound algorithm to solve the estimated mating design problem. Our approach dramatically reduces the computational effort required to solve the mating design problem when compared with naïve methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1