制造过程与传感器故障联合诊断的贝叶斯变量选择方法

Shan Li, Yong Chen
{"title":"制造过程与传感器故障联合诊断的贝叶斯变量选择方法","authors":"Shan Li, Yong Chen","doi":"10.1080/0740817X.2015.1109739","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article presents a Bayesian variable selection–based diagnosis approach to simultaneously identify both process mean shift faults and sensor mean shift faults in manufacturing processes. The proposed method directly models the probability of fault occurrence and can easily incorporate prior knowledge on the probability of a fault occurrence. Important concepts are introduced to understand the diagnosability of the proposed method. A guideline on how to select the values of hyper-parameters is given. A conditional maximum likelihood method is proposed as an alternative method to provide robustness to the selection of some key model parameters. Systematic simulation studies are used to provide insights on the relationship between the success of the diagnosis method and related system structure characteristics. A real assembly example is used to demonstrate the effectiveness of the proposed diagnosis method.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"47 1","pages":"313 - 323"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1109739","citationCount":"8","resultStr":"{\"title\":\"A Bayesian variable selection method for joint diagnosis of manufacturing process and sensor faults\",\"authors\":\"Shan Li, Yong Chen\",\"doi\":\"10.1080/0740817X.2015.1109739\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT This article presents a Bayesian variable selection–based diagnosis approach to simultaneously identify both process mean shift faults and sensor mean shift faults in manufacturing processes. The proposed method directly models the probability of fault occurrence and can easily incorporate prior knowledge on the probability of a fault occurrence. Important concepts are introduced to understand the diagnosability of the proposed method. A guideline on how to select the values of hyper-parameters is given. A conditional maximum likelihood method is proposed as an alternative method to provide robustness to the selection of some key model parameters. Systematic simulation studies are used to provide insights on the relationship between the success of the diagnosis method and related system structure characteristics. A real assembly example is used to demonstrate the effectiveness of the proposed diagnosis method.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"47 1\",\"pages\":\"313 - 323\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1109739\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1109739\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1109739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于贝叶斯变量选择的制造过程平均移位故障和传感器平均移位故障的诊断方法。该方法直接对故障发生的概率进行建模,可以很容易地将先验知识纳入故障发生的概率。介绍了重要的概念,以了解所提出的方法的可诊断性。给出了如何选择超参数值的准则。提出了一种条件极大似然法作为一种替代方法,为一些关键模型参数的选择提供了鲁棒性。系统仿真研究提供了诊断方法的成功与相关系统结构特征之间关系的见解。通过一个装配实例验证了该诊断方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Bayesian variable selection method for joint diagnosis of manufacturing process and sensor faults
ABSTRACT This article presents a Bayesian variable selection–based diagnosis approach to simultaneously identify both process mean shift faults and sensor mean shift faults in manufacturing processes. The proposed method directly models the probability of fault occurrence and can easily incorporate prior knowledge on the probability of a fault occurrence. Important concepts are introduced to understand the diagnosability of the proposed method. A guideline on how to select the values of hyper-parameters is given. A conditional maximum likelihood method is proposed as an alternative method to provide robustness to the selection of some key model parameters. Systematic simulation studies are used to provide insights on the relationship between the success of the diagnosis method and related system structure characteristics. A real assembly example is used to demonstrate the effectiveness of the proposed diagnosis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1