基于在线稀疏估计的先进制造过程异构传感器数据实时监控分类方法

K. Bastani, Prahalada K. Rao, Z. Kong
{"title":"基于在线稀疏估计的先进制造过程异构传感器数据实时监控分类方法","authors":"K. Bastani, Prahalada K. Rao, Z. Kong","doi":"10.1080/0740817X.2015.1122254","DOIUrl":null,"url":null,"abstract":"ABSTRACT The objective of this work is to realize real-time monitoring of process conditions in advanced manufacturing using multiple heterogeneous sensor signals. To achieve this objective we propose an approach invoking the concept of sparse estimation called online sparse estimation-based classification (OSEC). The novelty of the OSEC approach is in representing data from sensor signals as an underdetermined linear system of equations and subsequently solving the underdetermined linear system using a newly developed greedy Bayesian estimation method. We apply the OSEC approach to two advanced manufacturing scenarios, namely, a fused filament fabrication additive manufacturing process and an ultraprecision semiconductor chemical–mechanical planarization process. Using the proposed OSEC approach, process drifts are detected and classified with higher accuracy compared with popular machine learning techniques. Process drifts were detected and classified with a fidelity approaching 90% (F-score) using OSEC. In comparison, conventional signal analysis techniques—e.g., neural networks, support vector machines, quadratic discriminant analysis, naïve Bayes—were evaluated with F-score in the range of 40% to 70%.","PeriodicalId":13379,"journal":{"name":"IIE Transactions","volume":"165 1","pages":"579 - 598"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/0740817X.2015.1122254","citationCount":"49","resultStr":"{\"title\":\"An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data\",\"authors\":\"K. Bastani, Prahalada K. Rao, Z. Kong\",\"doi\":\"10.1080/0740817X.2015.1122254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT The objective of this work is to realize real-time monitoring of process conditions in advanced manufacturing using multiple heterogeneous sensor signals. To achieve this objective we propose an approach invoking the concept of sparse estimation called online sparse estimation-based classification (OSEC). The novelty of the OSEC approach is in representing data from sensor signals as an underdetermined linear system of equations and subsequently solving the underdetermined linear system using a newly developed greedy Bayesian estimation method. We apply the OSEC approach to two advanced manufacturing scenarios, namely, a fused filament fabrication additive manufacturing process and an ultraprecision semiconductor chemical–mechanical planarization process. Using the proposed OSEC approach, process drifts are detected and classified with higher accuracy compared with popular machine learning techniques. Process drifts were detected and classified with a fidelity approaching 90% (F-score) using OSEC. In comparison, conventional signal analysis techniques—e.g., neural networks, support vector machines, quadratic discriminant analysis, naïve Bayes—were evaluated with F-score in the range of 40% to 70%.\",\"PeriodicalId\":13379,\"journal\":{\"name\":\"IIE Transactions\",\"volume\":\"165 1\",\"pages\":\"579 - 598\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/0740817X.2015.1122254\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IIE Transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0740817X.2015.1122254\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IIE Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0740817X.2015.1122254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

本研究的目的是利用多种异构传感器信号实现先进制造过程状态的实时监控。为了实现这一目标,我们提出了一种调用稀疏估计概念的方法,称为基于在线稀疏估计的分类(OSEC)。OSEC方法的新颖之处在于将传感器信号中的数据表示为欠定线性方程组,然后使用新开发的贪婪贝叶斯估计方法求解欠定线性方程组。我们将OSEC方法应用于两种先进的制造方案,即熔丝制造增材制造工艺和超精密半导体化学机械平面化工艺。与流行的机器学习技术相比,使用所提出的OSEC方法可以以更高的精度检测和分类过程漂移。使用OSEC检测和分类过程漂移,保真度接近90% (f得分)。相比之下,传统的信号分析技术——例如。,神经网络,支持向量机,二次判别分析,naïve贝叶斯,f得分在40%到70%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An online sparse estimation-based classification approach for real-time monitoring in advanced manufacturing processes from heterogeneous sensor data
ABSTRACT The objective of this work is to realize real-time monitoring of process conditions in advanced manufacturing using multiple heterogeneous sensor signals. To achieve this objective we propose an approach invoking the concept of sparse estimation called online sparse estimation-based classification (OSEC). The novelty of the OSEC approach is in representing data from sensor signals as an underdetermined linear system of equations and subsequently solving the underdetermined linear system using a newly developed greedy Bayesian estimation method. We apply the OSEC approach to two advanced manufacturing scenarios, namely, a fused filament fabrication additive manufacturing process and an ultraprecision semiconductor chemical–mechanical planarization process. Using the proposed OSEC approach, process drifts are detected and classified with higher accuracy compared with popular machine learning techniques. Process drifts were detected and classified with a fidelity approaching 90% (F-score) using OSEC. In comparison, conventional signal analysis techniques—e.g., neural networks, support vector machines, quadratic discriminant analysis, naïve Bayes—were evaluated with F-score in the range of 40% to 70%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IIE Transactions
IIE Transactions 工程技术-工程:工业
自引率
0.00%
发文量
0
审稿时长
4.5 months
期刊最新文献
EOV Focus Area Editorial Boards Strategic health workforce planning Efficient computation of the likelihood expansions for diffusion models An introduction to optimal power flow: Theory, formulation, and examples An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1